Problem Set 1

1. Setting $z = e^{i \theta}$, we have

$$\sum_{k=0}^{\infty} e^{ik\theta} = \frac{1 - e^{i(1+1)\theta}}{1 - e^{i\theta}} = \frac{e^{-i\theta/2} - e^{i(1+1)\theta}}{e^{-i\theta/2} - e^{i\theta/2}}$$

$$= \frac{e^{-i\theta/2} - e^{i\theta/2}}{-2i \sin \theta/2}$$

The denominator is now pure imaginary, so taking the real part of both sides gives the imaginary part of the numerator

$$\sum_{k=0}^{n} \cos(k\theta) = \frac{-\sin \theta/2 - \sin(n+\frac{1}{2})\theta}{-2 \sin \theta/2} = \frac{1}{2} + \frac{\sin(n+\frac{1}{2})\theta}{2 \sin \theta/2}$$

2. The definition of the cosine gives

$$\cos z = w \implies \frac{1}{2}(e^{iz} + e^{-iz}) = w$$

$$\implies e^{iz} - 2w + e^{-iz} = 0 \implies (e^{iz})^2 - 2we^{iz} + 1 = 0$$

$$\implies e^{iz} = \frac{1}{2}(2w \pm \sqrt{(2w)^2 - 4}) = \frac{w \pm \sqrt{w^2 - 1}}{}$$

$$\implies z = -i \ln \left(\frac{w \pm \sqrt{w^2 - 1}}{} \right)$$

Setting $w = \alpha > 1$ gives a positive real number in the argument of the \ln for either \pm sign. The logs of these have an unambiguous real value, but recall that the complex log is defined only up to an integer multiple of $2\pi i$. Therefore, we find

$$z = \pi i \pm i \ln \left(\alpha \pm \sqrt{\alpha^2 - 1} \right)$$
When a is negative, $a < -1$, we must pull a sign out of the argument of \ln to get a calculable real number. Since $\ln(-1) = i\pi$,

$$z = (2n+1)i\pi - i \ln \left(-a \pm \sqrt{a^2 - 1}\right)$$

When $w = ia$, we have

$$z = -i \ln \left(i a \pm \sqrt{-a^2 - 1}\right) = -i \ln \left(i a \pm i \sqrt{a^2 + 1}\right)$$

$$= -i \ln (\pm i) - i \ln (\sqrt{a^2 + 1} \pm a)$$

$$= \pm \frac{i\pi}{2} + 2\pi n - i \ln \left(\sqrt{a^2 + 1} \pm a\right)$$

Once again, the last term has an unambiguous real value. It is gratifying that $\cos^{-1}w$ has two values in each 2π interval, even when it is necessarily complex.

We have

$$f(z) = \sqrt{(x+iy)^2 - 1} = \sqrt{x^2 - y^2 - 1 + 2ixy}$$

$$= \sqrt{(x^2 - y^2 - 1)^2 + 4x^2 y^2} \left(i \pm \tan^{-1} \frac{2xy}{x^2 - y^2 - 1} \right)$$

$$\Rightarrow V(x,y) = \sqrt{(x^2 - y^2 - 1)^2 + 4x^2 y^2} \cos \left(i \pm \tan^{-1} \frac{2xy}{x^2 - y^2 - 1} \right)$$

$$V(x,y) = \sqrt{(x^2 - y^2 - 1)^2 + 4x^2 y^2} \sin \left(i \pm \tan^{-1} \frac{2xy}{x^2 - y^2 - 1} \right)$$

Recall the trig identities $\cos \frac{\theta}{2} = \sqrt{\frac{1}{2} \left(1 + \tan^2 \frac{\theta}{2}\right)^{1/2}}$. $\sin \frac{\theta}{2} = \sqrt{\frac{1}{2} \left(1 + \tan^2 \frac{\theta}{2}\right)^{1/2}}$. $\cos \frac{\theta}{2} = \sqrt{\frac{1}{2} \left(1 + \tan^2 \frac{\theta}{2}\right)^{1/2}}$. $\sin \frac{\theta}{2} = \sqrt{\frac{1}{2} \left(1 + \tan^2 \frac{\theta}{2}\right)^{1/2}}$.
Therefore, we have

\[\nu(x, y) = \frac{4}{\sqrt{(x^2 - y^2 - 1)^2 + 4x^2y^2}} \sqrt{\frac{1}{2} \left(1 \pm \frac{4x^2y^2}{(x^2 - y^2 - 1)^2} \right)} \]

\[= \sqrt{\frac{1}{2} \left((x^2 - y^2 - 1)^2 + 4x^2y^2 \right)} \pm \sqrt{1 - (x^2 - y^2 - 1)^2} \]

The + sign gives \(u \), the –, \(v \).

Meanwhile, we have

\[\sqrt{z + 1} = \sqrt{x + 1 + iy} = \frac{4}{\sqrt{(x+1)^2 + y^2}} e^{i \tan^{-1} \frac{y}{x+1}} \]

\[= \frac{4}{\sqrt{(x+1)^2 + y^2}} \left(\sqrt{ \frac{1}{2} \left(1 + \frac{1}{\sqrt{(x+1)^2 + y^2}} \right) } + i \sqrt{ \frac{1}{2} \left(1 - \frac{1}{\sqrt{(x+1)^2 + y^2}} \right) } \right) \]

\[= \sqrt{\frac{1}{2} \left((x+1)^2 + y^2 \right)} + i \sqrt{\frac{1}{2} \left((x+1)^2 + y^2 \right) - 1} \]

We can take products of these factors to compute \(u(x, y) \) and \(v(x, y) \) for \(g(z) \).

Note that \(f(z) \) has a branch cut wherever \(z^2 - 1 \) is real and negative, which happens if

(a) \(z \) is real and \(|z| < 1 \), or (b) \(z \) is pure imaginary.

\(g(z) \) has a branch cut only in the first case.

Therefore, take \(a > 0 \) real and

\[f(-ia) = \sqrt{ -a^2 - 1 } = i \sqrt{1 + a^2} \]

\[g(-ia) = \sqrt{ -1 + i a } \sqrt{ 1 - i a } = \frac{4}{\sqrt{1 + a^2}} e^{i \frac{1}{2} (\tan^{-1} a - \pi)} \]

\[= \frac{4}{\sqrt{1 + a^2}} e^{i \frac{1}{2} \tan^{-1} a} \]

\[= \sqrt{1 + a^2} e^{-i \frac{\pi}{2}} = -i \sqrt{1 + a^2} \]
4. a) As \(a \) ranges over real values,

\[
1 + ia = \sqrt{1 + a^2} \ e^{i \tan^{-1} a},
\]

where \(-\frac{\pi}{2} < \tan^{-1} a < \frac{\pi}{2}\). However, the numerator has a more complicated argument.

In terms of the same branch of \(\tan^{-1} \),

\[
-1 + ia = \sqrt{1 + a^2} \ e^{i \left(\tan^{-1} (-a) + \pi \text{sgn}(a) \right)}
\]

\[
= \sqrt{1 + a^2} \ e^{-i \tan^{-1} a} \ e^{i \pi \text{sgn}(a)}
\]

where \(\text{sgn}(a) \) is the sign \((\pm)\) of \(a \). Thus,

\[
\eta(a) = \left(e^{-2\pi \tan^{-1} a} \ e^{i \pi \text{sgn}(a)} \right) b = e^{2\pi \tan^{-1} a - b \pi \text{sgn}(a)}
\]

b) The discontinuity is obviously at \(a = 0 \), where \(\eta \) jumps from \(e^{b\pi} \) for \(a < 0 \) to \(e^{-b\pi} \) for \(a > 0 \).

The magnitude of the discontinuity is

\[
\Delta \eta(0) = e^{-b\pi} - e^{b\pi} = -2 \sinh(b\pi)
\]

5. a) We write

\[
f(z) = u(x, y) + i \eta(x, y)
\]

\[
= w(z^*) = w(x - iy) = u(x, -y) + i \eta(x, -y)
\]

\[
\Rightarrow \frac{\partial}{\partial x} (x, y) = \frac{2}{i} \frac{\partial u}{\partial x} (x, -y) \quad \text{and} \quad \frac{\partial}{\partial y} (x, y) = -\frac{2}{i} \frac{\partial \eta}{\partial y} (x, -y)
\]
Thus, if \(\frac{\partial u}{\partial x}(x,y) = \frac{\partial v}{\partial y}(x,y) \) by the Cauchy-Riemann conditions, then \(\frac{\partial \bar{z}}{\partial x}(x,y) \neq \frac{\partial \bar{z}}{\partial y}(x,y) \).

b) In this case, we have \(u(x,y) = u(x,-y) \) and \(v(x,y) = -v(x,-y) \). Again, \(u \) and \(v \) do not satisfy the Cauchy-Riemann conditions.

c) In this case, \(u(x,y) = u(x,-y) \) and \(v(x,y) = -v(x,-y) \). It follows that

\[
\frac{\partial u}{\partial x}(x,y) = \frac{\partial u}{\partial x}(x,-y) = \frac{\partial v}{\partial y}(x,-y) = \frac{\partial v}{\partial y}(x,y)
\]

\[
\frac{\partial u}{\partial y}(x,y) = -\frac{\partial u}{\partial y}(x,-y) = \frac{\partial v}{\partial x}(x,-y) = -\frac{\partial v}{\partial x}(x,y)
\]

So, the Cauchy-Riemann conditions do not hold.

f(\(\bar{z} \)) is analytic.

6 a) \(\nabla^2(x^2 - y^2) = 6x - 6y \neq 0 \), so there can be no analytic \(f(z) \) in this case.

b) By observation, we see that this \(u(x,y) \) is the real part of \(f(z) = z^2 - i\bar{z} \), which of course is analytic.