<table>
<thead>
<tr>
<th>Topic</th>
<th>Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Special relativity (4 lectures)</td>
<td>§ 2.1 – .13 (14)</td>
</tr>
<tr>
<td>1 Historical origins, postulates and spacetime</td>
<td></td>
</tr>
<tr>
<td>• The tension between Newton and Maxwell</td>
<td></td>
</tr>
<tr>
<td>• Postulates and assumptions of special relativity</td>
<td></td>
</tr>
<tr>
<td>• Simultaneity and spacetime</td>
<td></td>
</tr>
<tr>
<td>2 Relativistic kinematics</td>
<td>§ 3.1 – .6, .10 (10)</td>
</tr>
<tr>
<td>• The Minkowski metric</td>
<td></td>
</tr>
<tr>
<td>• Lorentz transformations</td>
<td></td>
</tr>
<tr>
<td>• Kinematic effects</td>
<td></td>
</tr>
<tr>
<td>3 Relativistic dynamics</td>
<td>§ 3.7; 4.1 – .5 (12)</td>
</tr>
<tr>
<td>• Accelerated motion</td>
<td></td>
</tr>
<tr>
<td>• Scalar and vector forces</td>
<td></td>
</tr>
<tr>
<td>• Energy and momentum</td>
<td></td>
</tr>
<tr>
<td>4 Non-Inertial motion and the equivalence principle</td>
<td>§ 3.8 – .9; 9.1 – .4 (14)</td>
</tr>
<tr>
<td>• Uniformly accelerated observers</td>
<td></td>
</tr>
<tr>
<td>• Machian theories and equivalence</td>
<td></td>
</tr>
<tr>
<td>• What is gravity?</td>
<td></td>
</tr>
<tr>
<td>II A crash course on Riemannian geometry (3 lectures)</td>
<td></td>
</tr>
<tr>
<td>1 Differentiable manifolds</td>
<td>§ 5.1 – .9; 6.1, .2 (17)</td>
</tr>
<tr>
<td>• Manifolds and smooth functions</td>
<td></td>
</tr>
<tr>
<td>• Vector and tensor fields</td>
<td></td>
</tr>
<tr>
<td>• Mappings of manifolds and the Lie derivative</td>
<td></td>
</tr>
<tr>
<td>2 Riemannian geometry</td>
<td>§ 6.3 – .12; 7.7 (18)</td>
</tr>
<tr>
<td>• Affine connections and curvature</td>
<td></td>
</tr>
<tr>
<td>• Metric geometry</td>
<td></td>
</tr>
<tr>
<td>• Isometries</td>
<td></td>
</tr>
<tr>
<td>3 Integration on manifolds</td>
<td>§ 7.1 – .4 (6) +</td>
</tr>
<tr>
<td>• Differential forms and integrals</td>
<td></td>
</tr>
<tr>
<td>• Volume and the Hodge dual</td>
<td></td>
</tr>
<tr>
<td>• The generalized Stokes theorem</td>
<td></td>
</tr>
<tr>
<td>III Foundations of general relativity (6 lectures)</td>
<td></td>
</tr>
<tr>
<td>1 Minkowski spacetime as a particular gravitational field</td>
<td>§ 7.5 – .6; 8.1 – .8 (18)</td>
</tr>
<tr>
<td>• A geometric perspective on special relativity</td>
<td></td>
</tr>
<tr>
<td>• Geodesics and mechanics</td>
<td></td>
</tr>
<tr>
<td>• Symmetry and conservation laws</td>
<td></td>
</tr>
<tr>
<td>2 Gravity as geometry</td>
<td>§ 9.5 – .7; 10.1 – .7 (13)</td>
</tr>
<tr>
<td>• Tidal forces and geodesic deviation</td>
<td></td>
</tr>
<tr>
<td>• The Einstein field equation</td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>Reading</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>Topic</td>
<td>Reading</td>
</tr>
<tr>
<td>• Uniqueness of Einstein's theory</td>
<td></td>
</tr>
<tr>
<td>• 3 Gravitational sources</td>
<td>§ 12.1 – .8 (11)</td>
</tr>
<tr>
<td>• Matter sources</td>
<td></td>
</tr>
<tr>
<td>• Einstein–Maxwell theory</td>
<td></td>
</tr>
<tr>
<td>• Energy conditions</td>
<td></td>
</tr>
<tr>
<td>• 4 The nature of the field equations</td>
<td>§ 13.1 – .7 (11)</td>
</tr>
<tr>
<td>• Constraints and gauge</td>
<td></td>
</tr>
<tr>
<td>• The Cauchy problem</td>
<td></td>
</tr>
<tr>
<td>• The cosmological constant</td>
<td></td>
</tr>
<tr>
<td>• 5 Motion in curved spacetime</td>
<td>§ 12.9, .10; 20.1, .2 (8) +</td>
</tr>
<tr>
<td>• The Newtonian limit</td>
<td></td>
</tr>
<tr>
<td>• The post-Minkowski expansion</td>
<td></td>
</tr>
<tr>
<td>• Does the field equation predict source motion?</td>
<td></td>
</tr>
<tr>
<td>• 6 Action principles for gravity</td>
<td>§ 11.1 – .8 (9)</td>
</tr>
<tr>
<td>• The Einstein–Hilbert action</td>
<td></td>
</tr>
<tr>
<td>• The Palatini action</td>
<td></td>
</tr>
<tr>
<td>• Coordinate invariance</td>
<td></td>
</tr>
<tr>
<td>• IV Isolated gravitational sources (6 lectures)</td>
<td></td>
</tr>
<tr>
<td>• 1 The Schwarzschild solution</td>
<td>§ 14.1 – .6 (10)</td>
</tr>
<tr>
<td>• Stationary and static metrics</td>
<td></td>
</tr>
<tr>
<td>• Spherical symmetry</td>
<td></td>
</tr>
<tr>
<td>• Solving the Einstein equation</td>
<td></td>
</tr>
<tr>
<td>• 2 Signatures of relativistic gravity</td>
<td>§ 15.1 – .5 (13)</td>
</tr>
<tr>
<td>• Perihelion advance</td>
<td></td>
</tr>
<tr>
<td>• Deflection of light</td>
<td></td>
</tr>
<tr>
<td>• Gravitational red shift</td>
<td></td>
</tr>
<tr>
<td>• 3 The Schwarzschild black hole</td>
<td>§ 16.1 – .8 (12)</td>
</tr>
<tr>
<td>• Singularities of the Schwarzschild solution</td>
<td></td>
</tr>
<tr>
<td>• Eddington–Finkelstein coordinates</td>
<td></td>
</tr>
<tr>
<td>• The event horizon</td>
<td></td>
</tr>
<tr>
<td>• 4 Global structure of the Schwarzschild solution</td>
<td>§ 17.1 – .5 (9)</td>
</tr>
<tr>
<td>• The Kruskal extension</td>
<td></td>
</tr>
<tr>
<td>• Conformal compactification</td>
<td></td>
</tr>
<tr>
<td>• Penrose diagrams</td>
<td></td>
</tr>
<tr>
<td>• 5 Spherical stars</td>
<td>+</td>
</tr>
<tr>
<td>• Interior solutions in spherical symmetry</td>
<td></td>
</tr>
<tr>
<td>• Hydrostatic equilibrium</td>
<td></td>
</tr>
<tr>
<td>• The Chandrasekhar limit</td>
<td></td>
</tr>
<tr>
<td>• 6 Rotating black holes</td>
<td>§ 19.3 – .10 (12)</td>
</tr>
<tr>
<td>• The Kerr metric</td>
<td></td>
</tr>
<tr>
<td>• Spacetime structure</td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>Reading</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>● Maximal rotation</td>
<td></td>
</tr>
<tr>
<td>● 7 General features of black holes</td>
<td>§ 18.1 – .5; 19.11 – .12 (13)</td>
</tr>
<tr>
<td>● What is a black hole?</td>
<td></td>
</tr>
<tr>
<td>● Singularity and uniqueness theorems</td>
<td></td>
</tr>
<tr>
<td>● Quantum effects</td>
<td></td>
</tr>
</tbody>
</table>

V Gravitational radiation (5 lectures)

<table>
<thead>
<tr>
<th>1 Plane gravitational waves</th>
<th>§ 20.3 – .5, .9 (12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Plane waves in linearized gravity</td>
<td></td>
</tr>
<tr>
<td>● Exact plane-wave solutions</td>
<td></td>
</tr>
<tr>
<td>● Detecting gravitational waves</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 Weak gravitational waves from compact sources</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Radiation gauge in linearized gravity</td>
<td></td>
</tr>
<tr>
<td>● Sources of gravitational radiation</td>
<td></td>
</tr>
<tr>
<td>● The quadrupole formula</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 Asymptotic description of gravitational radiation</th>
<th>§ 21.1 – .6 (10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Radiation coordinates</td>
<td></td>
</tr>
<tr>
<td>● Characteristic formulation of general relativity</td>
<td></td>
</tr>
<tr>
<td>● Bondi news</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 Local characterization of gravitational radiation</th>
<th>§ 6.13; 21.7 – .9 (5) +</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Algebraic classification of metrics</td>
<td></td>
</tr>
<tr>
<td>● The peeling-off theorem</td>
<td></td>
</tr>
<tr>
<td>● Null congruences and propagation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5 Radiation reaction in general relativity</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>● The Dirac approach to radiation reaction</td>
<td></td>
</tr>
<tr>
<td>● Second-order perturbation theory</td>
<td></td>
</tr>
<tr>
<td>● Source motion and integrability</td>
<td></td>
</tr>
</tbody>
</table>

VI Relativistic cosmology (4 lectures)

<table>
<thead>
<tr>
<th>1 Homogeneous and isotropic spacetimes</th>
<th>§ 22.1 – .8 (15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>● The cosmological principle</td>
<td></td>
</tr>
<tr>
<td>● Homogeneity and isotropy</td>
<td></td>
</tr>
<tr>
<td>● Spaces of constant curvature</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 Basic cosmological phenomenology</th>
<th>§ 22.9 – .12 (8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>● The Friedmann equation</td>
<td></td>
</tr>
<tr>
<td>● Observables in cosmology</td>
<td></td>
</tr>
<tr>
<td>● Hubble's law</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 Simple cosmological models</th>
<th>§ 23.1 – .10 (13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>● The role of the cosmological constant</td>
<td></td>
</tr>
<tr>
<td>● Classification of Friedmann solutions</td>
<td></td>
</tr>
<tr>
<td>● Dark matter and dark energy</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 Global structure of cosmological spacetimes</th>
<th>§ 23.12 – .16 (11) +</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Cosmological horizons</td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Conformal structure of cosmological solutions</td>
<td></td>
</tr>
<tr>
<td>Asymptotically simple spacetimes</td>
<td></td>
</tr>
<tr>
<td>Quantum cosmology</td>
<td></td>
</tr>
<tr>
<td>Symmetry reduction of the action</td>
<td></td>
</tr>
<tr>
<td>Canonical quantization</td>
<td></td>
</tr>
<tr>
<td>Relation to quantum gravity</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
</tr>
</tbody>
</table>