Structure of Minkowski Space

• There are five kinds of vectors in Minkowski spacetime:

 • space-like $\|\mathbf{x}\|^2 > 0$
 • time-like $\|\mathbf{x}\|^2 < 0$
 • and light-like. $\|\mathbf{x}\|^2 = 0$

• Time-like and light-like vectors can be either

 • future-directed $t_x > 0$
 • or past-directed. $t_x < 0$

\[
\|\mathbf{x}\|^2 := -c^2 t_x^2 + |\vec{x}|^2
\]
Structure of Minkowski Space

• There are five kinds of vectors in Minkowski spacetime:
 - space-like \(\|\mathbf{x}\|^2 > 0 \)
 - time-like \(\|\mathbf{x}\|^2 < 0 \)
 - and light-like. \(\|\mathbf{x}\|^2 = 0 \)

• Time-like and light-like vectors can be either
 - future-directed \(t_\mathbf{x} > 0 \)
 - or past-directed. \(t_\mathbf{x} < 0 \)

\[
\begin{align*}
\|\mathbf{x}\|^2 &:= -c^2 t_\mathbf{x}^2 + |\vec{x}|^2 \\
t' &= \gamma (t - \vec{v} \cdot \vec{x} / c^2) \\
|\vec{v} \cdot \vec{x}| &\leq |\vec{v}| |\vec{x}| < vc |t_\mathbf{x}| < c^2 |t_\mathbf{x}|
\end{align*}
\]
Structure of Minkowski Space

- There are five kinds of vectors in Minkowski spacetime:
 - space-like $\|\mathbf{x}\|^2 > 0$
 - time-like $\|\mathbf{x}\|^2 < 0$
 - and light-like. $\|\mathbf{x}\|^2 = 0$
 - Time-like and light-like vectors can be either
 - future-directed $t_x > 0$
 - or past-directed. $t_x < 0$

\[t' = \gamma (t - \mathbf{v} \cdot \mathbf{x}/c^2) \]
\[|\mathbf{v} \cdot \mathbf{x}| \leq |\mathbf{v}| |\mathbf{x}| < vc |t_x| < c^2 |t_x| \]
\[\|\mathbf{x}\|^2 := -c^2 t_x^2 + |\mathbf{x}|^2 \]
Kinematical Effects
Length Contraction

An inertial observer O' carries a ruler of length L_0 at speed v past an inertial observer O.

How long does O measure it to be?
Length Contraction

An inertial observer O' carries a ruler of length L_0 at speed v past an inertial observer O.

How long does O measure it to be?

How long does O' measure and identical ruler carried by O to be?

$$x_0' = 0 = \gamma (x_0 - vt)$$

$$x_1' = L_0 = \gamma (x_1 - vt)$$

$$x_1(t) - x_0(t) = \frac{L_0}{\gamma} = \sqrt{1 - \frac{v^2}{c^2}} L_0$$
Length Contraction

An inertial observer O' carries a ruler of length L_0 at speed v past an inertial observer O.

How long does O measure it to be?

How long does O' measure and identical ruler carried by O to be?

$$x_1(t) - x_0(t) = \frac{L_0}{\gamma} = \sqrt{1 - v^2/c^2} L_0$$

$$x_0 = 0 \quad x' = \gamma (x - vt)$$

$$x_1 = L_0 \quad t' = \gamma (t - vx/c^2)$$

$$x' + vt' = \gamma (x - v^2 x/c^2)$$
Length Contraction

An inertial observer O' carries a ruler of length L_0 at speed v past an inertial observer O.

How long does O measure it to be?

How long does O' measure and identical ruler carried by O to be?

\[
x_1(t) - x_0(t) = \frac{L_0}{\gamma} = \sqrt{1 - v^2/c^2} L_0
\]
Length Contraction

An inertial observer O' carries a ruler of length L_0 at speed v past an inertial observer O.

How long does O measure it to be?

How long does O' measure and identical ruler carried by O to be?

Length of O' ruler measured by $O = ||A|| < ||B||$

Length of O ruler measured by $O' = ||C|| < ||D||$

\[
x_1(t) - x_0(t) = \frac{L_0}{\gamma} = \sqrt{1 - \frac{v^2}{c^2}} L_0
\]

\[
x'_1(t') - x'_0(t') = \frac{L_0}{\gamma}
\]
Time Dilation

An inertial observer O' carries a clock that advances a time T_0 while she passes O at speed v.

How much time elapses for O?

What happens if the roles are reversed?

$$T := t_E = \gamma T_0 = \frac{T_0}{\sqrt{1 - v^2/c^2}}$$

$$\vec{x}_{O'}(t) = \vec{v} t$$

$$t'_E = \gamma (t_E - \vec{v} \cdot \vec{x}_E/c^2) = \gamma (1 - v^2/c^2) t_E = \frac{t_E}{\gamma}$$
Time Dilation

An inertial observer O' carries a clock that advances a time T_0 while she passes O at speed v.

How much time elapses for O?

What happens if the roles are reversed?

\[
T := t_E = \gamma T_0 = \frac{T_0}{\sqrt{1 - v^2/c^2}}
\]

\[
T' = \gamma T_0
\]

\[
\vec{x}_{O'}(t) = \vec{v} t
\]

\[
t'_{G} = \gamma (t_G - \vec{v} \cdot \vec{x}_G/c^2) = \gamma T_0
\]
Time Dilation

An inertial observer \(O' \) carries a clock that advances a time \(T_0 \) while she passes \(O \) at speed \(v \).

How much time elapses for \(O \)?

What happens if the roles are reversed?

\[
T := t_E = \gamma T_0 = \frac{T_0}{\sqrt{1 - v^2/c^2}}
\]

\[
T' = \gamma T_0
\]

\[
\vec{x}_{O'}(t) = \vec{v}t
\]

\[
\sqrt{-\|F\|^2} > \sqrt{-\|G\|^2} = \sqrt{-\|E\|^2} < \sqrt{-\|H\|^2}
\]
Velocity Addition

A particle moves with uniform velocity \(u' \) relative to \(O' \), who moves with uniform velocity \(v \) relative to \(O \).

This particle will move with uniform velocity \(u \) relative to \(O \). What is it?

\[
[I + (\gamma - 1) \hat{v} \hat{v} + \vec{u}' \vec{v} / c^2]^{-1} = I - \frac{(1 - \gamma^{-1}) \hat{v} \hat{v}}{1 + \vec{v} \cdot \vec{u}' / c^2} - \frac{\vec{u}' \vec{v} / c^2}{1 + \vec{v} \cdot \vec{u}' / c^2}
\]

Exercise!

\[\vec{x}' = \vec{u}' \cdot t' \]

\[[I + (\gamma - 1) \hat{v} \hat{v}] \cdot \vec{x} - \gamma \vec{v} \cdot t = \vec{u}' \gamma \left(t - \vec{v} \cdot \vec{x} / c^2 \right) \]

\[[I + (\gamma - 1) \hat{v} \hat{v} + \vec{u}' \vec{v} / c^2] \cdot \vec{x} = \gamma (\vec{v} + \vec{u}') \cdot t \]

\[\vec{x} = \vec{u} \cdot t \quad \text{with} \quad \vec{u} = \frac{\vec{v} + \vec{u}'_\parallel + \vec{u}'_\perp / \gamma}{1 + \vec{v} \cdot \vec{u}' / c^2} \]
Aberration

How does the angle of incidence of a stream of particles depend on the motion of the observer?

How does the angle of incidence of a wave depend on the motion of the observer?
Aberration

How does the angle of incidence of a stream of particles depend on the motion of the observer?

How does the angle of incidence of a wave depend on the motion of the observer?
Aberration

How does the angle of incidence of a stream of particles depend on the motion of the observer?

How does the angle of incidence of a wave depend on the motion of the observer?

\[
\frac{u'^2}{c^2} = 1 - \frac{(1 - v^2/c^2)(1 - u^2/c^2)}{[1 + (vu/c^2) \cos \alpha]^2}
\]

\[
\tan \alpha' = \frac{\sin \alpha}{\gamma (\cos \alpha + v/u)}
\]
Aberration

How does the angle of incidence of a stream of particles depend on the motion of the observer?

How does the angle of incidence of a wave depend on the motion of the observer?

\[
\frac{u'^2}{c^2} = 1 - \frac{(1 - v^2/c^2) (1 - u^2/c^2)}{[1 + (vu/c^2) \cos \alpha]^2}
\]

\[
\tan \alpha' = \frac{\sin \alpha}{\gamma (\cos \alpha + v/u)}
\]

\[
\Psi(t, \vec{x}) = A e^{-i(\omega t - \vec{k} \cdot \vec{x})}
\]

\[
0 = \frac{d}{dt} (\omega t - \vec{k} \cdot \vec{x}) = \omega - \vec{k} \cdot \vec{u}
\]

\[
\omega t - \vec{k} \cdot \vec{x} = \omega \gamma (t' + \vec{v} \cdot \vec{x}'/c^2) - \vec{k} \cdot [\vec{x}' + (\gamma - 1) \hat{\nu} \nu \cdot \vec{x}' + \gamma \vec{u} t]
\]
(Particle Case)

$$\tan \alpha' = \frac{\sin \alpha}{\gamma (\cos \alpha + v/u)}$$

$$\frac{u'^2}{c^2} = 1 - \frac{(1 - v^2/c^2) (1 - u^2/c^2)}{[1 + (vu/c^2) \cos \alpha]^2}$$

Aberration

How does the angle of incidence of a stream of particles depend on the motion of the observer?

How does the angle of incidence of a wave depend on the motion of the observer?

$$\Psi(t, \vec{x}) = A e^{-i(\omega t - \vec{k} \cdot \vec{x})}$$

$$0 = \frac{d}{dt} (\omega t - \vec{k} \cdot \vec{x}) = \omega - \vec{k} \cdot \vec{u}$$

$$\left(\begin{array}{c} \omega'/c^2 \\ \vec{k}' \end{array} \right) = \left(\begin{array}{cc} \gamma & -\gamma c^{-2} \vec{v} \cdot \\ -\gamma \vec{v} & I \cdot + (\gamma - 1) \hat{v} \hat{v} \cdot \end{array} \right) \left(\begin{array}{c} \omega/c^2 \\ \vec{k} \end{array} \right)$$

$$\omega t - \vec{k} \cdot \vec{x} = \gamma (\omega - \vec{v} \cdot \vec{k}) t' - [\vec{k} + (\gamma - 1) \vec{k} \cdot \hat{v} \hat{v} - \gamma \vec{v} \omega/c^2] \cdot \vec{x}'$$
(Particle Case)
\[
\tan \alpha' = \frac{\sin \alpha}{\gamma (\cos \alpha + v/u)}
\]
\[
\frac{u'^2}{c^2} = 1 - \frac{(1 - v^2/c^2) (1 - u^2/c^2)}{[1 + (vu/c^2) \cos \alpha]^2}
\]

Aberration

How does the angle of incidence of a stream of particles depend on the motion of the observer?

How does the angle of incidence of a wave depend on the motion of the observer?

\[
\omega' = \gamma (\omega + vk \cos \alpha)
\]
\[
k' \cos \alpha' = \gamma (k \cos \alpha + v\omega/c^2)
\]
\[
k' \sin \alpha' = k \sin \alpha
\]
Aberration

How does the angle of incidence of a stream of particles depend on the motion of the observer?

How does the angle of incidence of a wave depend on the motion of the observer?

(Particle Case)

\[
\frac{u'}{c^2} = 1 - \frac{(1 - v^2/c^2)(1 - u^2/c^2)}{[1 + (vu/c)^2 \cos \alpha]^2}
\]

\[
\tan \alpha' = \frac{\sin \alpha}{\gamma (\cos \alpha + v/u)}
\]

(Wave Case)

\[
\frac{c^2}{u'^2} = 1 - \frac{(1 - v^2/c^2)(1 - c^2/u^2)}{[1 + (v/u) \cos \alpha]^2}
\]

\[
\tan \alpha' = \frac{\sin \alpha}{\gamma (\cos \alpha + vu/c^2)}
\]
Aberration

How does the angle of incidence of a stream of particles depend on the motion of the observer?

How does the angle of incidence of a **wave** depend on the motion of the observer?

\[
\tan \alpha' = \frac{\sin \alpha}{\gamma (\cos \alpha + v/u)}
\]

\[
\frac{u'^2}{c^2} = 1 - \frac{(1 - v^2/c^2) (1 - u^2/c^2)}{[1 + (vu/c^2) \cos \alpha]^2}
\]

\[
u = \frac{v - \hat{k} \hat{k} \cdot v}{\sqrt{1 + (\hat{k} \cdot v/c)^2}}
\]
Doppler Shift

Suppose a moving source emits pulses of light periodically at frequency ω_0.

With what frequency does an inertial observer O see pulses?

At what time t does the pulse emitted at time s arrive at O?

$$t(s) = s + \frac{\left| \vec{r}'(s) \right|}{c}$$

$$\dot{t}(s) = 1 + \frac{\vec{r}'(s) \cdot \vec{r}(s)}{c \left| \vec{r}(s) \right|} = 1 + \frac{\hat{r}(s) \cdot \vec{r}(s)}{c}$$

$$\Delta t \approx \left(1 + \frac{\hat{r}(s) \cdot \vec{v}}{c} \right) \gamma(s) \Delta s_0$$

$$\frac{\omega_0}{\omega} = \left[\frac{1 + \hat{r} \cdot \vec{v}/c}{\sqrt{1 - v^2/c^2}} \right]_{\text{ret}}$$

$$\ddot{t}(s) = \frac{\vec{r}'(s) \cdot \vec{r}'(s) + \vec{r}'(s) \cdot \vec{r}''(s)}{c \left| \vec{r}'(s) \right|} - \frac{(\vec{r}'(s) \cdot \vec{r}'(s))^2}{c \left| \vec{r}'(s) \right|^3} = \frac{\hat{r}(s) \cdot \vec{r}'(s)}{c} + \frac{\vec{r}'(s) \cdot \left[I - \hat{r}(s) \hat{r}(s) \right] \cdot \vec{r}'(s)}{c \left| \vec{r}'(s) \right|}$$