Problem Set V
Due: Tuesday, 5 October 2010

1. (Problems 2.9.12, 18 and 23, pp. 63–64)
Express each of the following complex numbers in the Cartesian form $z = x + iy$.

\[z^{(a)} := 4 e^{-8\pi i/3}, \quad z^{(b)} := \left(\frac{1 + i}{1 - i}\right)^4 \quad \text{and} \quad z^{(c)} := \frac{(1 + i)^{48}}{(\sqrt{3} - i)^{25}}. \]

2. (Problems 2.10.10, 19 and 23, pp. 66–67)
Find all complex values of each of the following roots.

\[z^{(a)} := \sqrt[3]{32}, \quad z^{(b)} := \sqrt[3]{i} \quad \text{and} \quad z^{(c)} := 4\sqrt[4]{8i}. \]

3. (Problems 2.11.4, 7 and 10, p. 69)
Find all complex values of each of the following functions.

\[z^{(a)} := e^{3 \ln 2 - i\pi}, \quad z^{(b)} := \tan(i \ln 2) \quad \text{and} \quad z^{(c)} := \sin(i \ln i). \]

4. (Problems 2.12.2, 3, 8, 12 and 16, p. 71)
Verify each of the following identities using the definitions of the standard trigonometric and hyperbolic functions of a complex variable $z = x + iy$.

a. $\cos z = \cos x \cosh y - i \sin x \sinh y$

b. $\sinh z = \sinh x \cos y + i \cosh x \sin y$

c. $\cosh 2z = \cosh^2 z + \sinh^2 z$

d. $\cos^4 z + \sin^4 z = 1 - \frac{1}{4} \sin^2 2z$

e. $\tan iz = i \tanh z$

5. (Problems 2.11.27, 29 and 36, p. 71)
Evaluate each of the following functions in the Cartesian form $z = x + iy$

\[z^{(a)} := \sin(4 + 3i), \quad z^{(b)} := \cosh 2\pi i \quad \text{and} \quad z^{(c)} := \sinh \left(1 + \frac{i\pi}{2}\right). \]

6. (Problems 2.14.7, 9 and 19, p. 74)
Find all complex values of each of the following functions.

\[z^{(a)} := \ln \frac{1 + i}{1 - i}, \quad z^{(b)} := (-1)^i \quad \text{and} \quad z^{(c)} := \cos(\pi + i \ln 2). \]
7. (Problems 2.15.7, 10 and 13, p. 74)
 Find all complex values of each of the following inverse functions.
 \[z^{(a)} := \tan^{-1}(i\sqrt{2}), \quad z^{(b)} := \cos^{-1}\frac{5}{4} \quad \text{and} \quad z^{(c)} := \cosh^{-1}(-1). \]

8. (Problems 14.1.8, 12 and 16, p. 667)
 Find the real and imaginary parts \(u(x, y) \) and \(v(x, y) \), respectively, of the following functions of a complex variable \(z = x + iy \).
 \[f^{(a)}(z) := \sin z, \quad f^{(b)}(z) := \frac{z}{z^2 + 1} \quad \text{and} \quad f^{(c)}(z) := z^2 - \bar{z}^2. \]

9. (Problems 14.2.8, 12 and 16, p. 672)
 Use the Cauchy–Riemann conditions to determine all points \(z \) where each of the functions in the previous problem is analytic.

10. (Problems 14.2.36, 40 and 41, p. 667)
 Expand each of the following functions of a complex variable \(z = x + iy \) in a power series about the origin \(z = 0 \) in the complex plane. Find the disk of convergence for each.
 \[f^{(a)}(z) := \sqrt{1 + z^2}, \quad f^{(b)}(z) := \frac{1}{1 - z} \quad \text{and} \quad f^{(c)}(z) := e^{iz}. \]