Problem Set I
Due: Tuesday, 31 August 2010

1. (Problems 1.10.5, 9 and 15, p. 22)
Find the interval of convergence of each of the following power series. Be sure to investigate the endpoints of the interval in each case.

\[S(a) = \sum_{n=1}^{\infty} \frac{x^n}{(n!)^2}, \quad S(b) = \sum_{n=1}^{\infty} (-1)^n n^3 x^n \quad \text{and} \quad S(c) = \sum_{n=1}^{\infty} \frac{(x-2)^n}{3^n}. \]

2. (Problems 1.13.9, 13 and 17, p. 32)
Expand each of the following functions in a Maclaurin series (a Taylor series about \(x = 0 \)). Write the series as an infinite sum and calculate the first few (non-zero) terms explicitly.

\[f(a)(x) = 1 + \frac{x}{1-x}, \quad f(b)(x) = \int_{0}^{x} e^{-t^2} \, dt \quad \text{and} \quad f(c)(x) = \ln \frac{1 + x}{1-x}. \]

3. (Problems 1.13.26, 31 and 35, p. 32)
Find the first few terms of the Maclaurin series for each of the following functions and check your results by computer.

\[f(a)(x) = \frac{1}{\sqrt{\cos x}}, \quad f(b)(x) = \cos(e^x - 1) \quad \text{and} \quad f(c)(x) = \frac{x}{\sin x}. \]

4. (Problems 1.15.7, 12 and 23c, pp. 40–41)
Use Maclaurin series to evaluate the following limits.

\[y(a) = \frac{d^8}{dx^8}(x^6 \tan^2 x) \bigg|_{x=0}, \quad y(b) = \lim_{x \to 0} \frac{\tan x - x}{x^3} \quad \text{and} \quad y(c) = \lim_{x \to 0} \left(\csc^2 x - \frac{1}{x^2} \right). \]

5. (Problem 1.16.28, p. 42)
The energy of an electron at speed \(v \) in special relativity theory is \(E = mc^2(1 - v^2/c^2)^{-1/2} \), where \(m \) is the electron mass, and \(c \) is the speed of light. The factor \(mc^2 \) is called the rest mass energy (the energy when \(v = 0 \)). Find the first three terms of the series expansion of \(E \) in \(v \). What is the second term in the series?

6. (Problem 1.16.33, p. 43)
If you are at the top of a tower of height \(h \) above the surface of the earth, show that the distance you can see along the surface of the earth is approximately \(s = \sqrt{2Rh} \), where \(R \) is the radius of the earth. (See the figure and the hints in the book.)
7. (Problem 4.12.16, p. 237)

In kinetic theory, we have to evaluate integrals of the form

\[I(n) = \int_{0}^{\infty} t^n e^{-at^2} \, dt. \]

Given that \(I(0) = \sqrt{\pi/4a} \), evaluate \(I \) for all integers \(n \).