A Two-Domain Spectral Method for Solving the
Constraint Equations of Binary Black Holes

with Alternative Initial Data Schemes
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Motivation

® Constraint solving may further validate schemes

— Use a conformal decomposition and CTTD
_ Wi H
g; =% 0;
K =9 (A" + LW")
— Also use the Punctures technique to control divergent behavior

Y=y +u
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Motivation

® Constraint Equations become a set of 4 elliptic equations

0=V?¥ é YR+ %‘Iﬂ (AY+ LW)(A" + LW)g, 3,

0=A,W +V Al

W/ =VW VW - 2g W, w* AW =V W’
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Two-Domain Spectral Grid

® General method for computing initial data for binaries

— We choose: Two-Domains for Excised Binary Black Holes

® Developed by Marcus Ansorg as a way to
— Compactify spatial infinity to a finite grid
— Resolve data at infinity

— Deal with puncture singularities (If using Puncture data)
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Two-Domain Spectral Grid

® Involves several coordinate transformations

(xy.2) > (% p0) |0
(xp.@0) > (XR@) [/
XRo)>ABo) |/

® Grid points are the collocation points of the pseudo-spectral

method

E&U
FLORIDA ATLANTIC
UNIVERSITY




Pseudo-spectral Method

® An alternative to finite-differencing to accurately compute

spatial derivatives

— Global vs. Local calculation

® A function can be expressed as a set of basis functions
L¢=D(X)

Let : p(X) = ZN:Cm f. (X
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Pseudo-spectral Method

® E.g. Fourier Series

If: V. ¢=>D(X Let: @(X) = ZN:Cm e'™

P = P(X,)
N -
¢(Xn): Zcm gimx; X = 27N
m=0 N
(@, ) p \ (C, )
s |l v |l c
\¢n—1/ \ g \Cn—l/
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Pseudo-spectral Method

® Function values and coefficients stored after first

computations

¢ At collocation points we have a 1:1 relation between function

values and coefficients through FFTs

® Any derivative operation can be handled later with the
coefficients (Spectral) or the function values (Pseudo-

spectral)

V)= (im)-C, e = 3 (im) -4,
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Pseudo-spectral Method

® More efficient as the resolution increases compared to a

finite- difference method

® Has the potential for “exponential convergence”

N
N

EaU

FLORIDA ATLANTIC
UNIVERSITY




Pseudo-spectral Method

® Choice of basis functions depends on problem properties

— Fourier, Chebyshev, Hermite, Laguerre

® Our domain is suited for Fourier and Chebyshev basis

functions

® Our Boundary Conditions determine the collocation points

— Conformal factor — 0 asr — inf

® We use the zeroes of the Chebyshev functions as the collocation points

O o S e
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Constraint Solving

® Solving multi-dimensional non-linear elliptic equations can

be time-consuming and inefficient if done improperly

¢ Standard approach is to use the Newton-Raphson technique

F.(xl,xz,...,x )=0

F (X + OX) = F(x)+z '5x +O(X?)

J
F(X+ o) =F(X) +J - X + O(5?)
J-oX=-F

EaU

FLORIDA ATLANTIC
UNIVERSITY




Constraint Solving

® Each iteration moves the functions closer to zero until

convergence
® Many choices of iteration method (We choose GMRES)

® The speed/efficiency of the N-R routine is highly dependent
on the initial guess for each root
® We can reduce the matrix solving time by preconditioning J

— Same solution with more favorable matrix properties

— Can use the finite difference J as a preconditioner (More sparse)

EaU

FLORIDA ATLANTIC
UNIVERSITY




2.00E-04

1.50E-04

1.00E-04

5.00E-05

0.00E+00

30

31

32

33
pts.in A

34

35

36

=@—"Seriesl

E&U

George Reifenberger

FLORIDA ATLANTIC FAUST Seminar

UNIVERSITY

October 10, 2012

16 of 18



More Results?

® Currently working on solving ADMTT full Initial Data

— Debugging underway at the moment

® We will also solve the Johnson-McDaniel 2PN Schwarzschild

match data
® If our level of accuracy is comparable to punctures data, we
will incorporate the solving into our evolutions with BAM

— Interpolation back onto a finite Cartesian grid of equally-spaced

grid points
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