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Spherically symmetric solutions of hypothetical scalar field “galileon”models will be discussed
in the context of general relativity. There are two distinct phases of solutions arising from physically
reasonable boundary conditions. Those in the “censored”phase exhibit horizons, as expected, while
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Galileon theories are a class of models for hypothetical scalar fields whose Lagrangians involve
multilinears of first and second derivatives, but whose nonlinear field equations are still only second
order. They may be important for the description of large-scale features in astrophysics as well as
for elementary particle theory. Hierarchies of galileon Lagrangians were discussed mathematically
for flat spacetime, independently of an earlier systematic survey of second-order scalar-tensor field
equations in curved 4D spacetime. The simplest example involves a single scalar field, φ. This
galileon field may be coupled “universally” to the trace of the energy-momentum tensor, Θ, and
upon so doing, it is gravitation-like by virtue of the similarity between this universal coupling and
that of the metric gµν to Θµν in general relativity. As might be expected from this similarity and
the ubiquitous generation of scalar fields by the process of dimensional reduction, it is possible to
obtain some galileon models from limits of higher dimensional gravitation theories. Indeed, galileon
models were discovered yet again by this process.

A =

∫
φαφα φββ d

nx (1)

where φ is the scalar galileon field, φα = ∂φ (x) /∂xα, etc., and where repeated indices are summed
using the Lorentz metric δµν = diag (1,−1,−1, · · · ). The field equations are E = 0 where

δA

δφ
= −2 E (2)

E = φααφββ − φαβφαβ (3)

More generally, there is a hierarchy for 1 ≤ k ≤ n.

Ak =

∫
φαφα Ek−1 dnx (4)

Ek−1 = δ
α1α2···αk−1
β1β2···βk−1 × φα1β1φα2β2 · · ·φαk−1βk−1 (5)
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Effects of φ Θ[φ] self-couplings

Consider the classical features of galileon theories with an additional self-coupling of the fields to
the trace of their own energy-momentum tensor, in flat 4D spacetime.
For the simplest example, the galileon field is usually coupled to all other matter through the

trace of the energy-momentum tensor, Θ(matter). But surely, in a self-consistent theory the galileon
should also be coupled to its own energy-momentum trace, even in the flat spacetime limit. Some
consequences of this additional self-coupling are considered here.

Non-vanishing trace

Including in A a minimal coupling to a background spacetime metric yields a symmetric energy-
momentum tensor, which becomes in the flat-space limit:

Θ(2)
µν = φµφνφαα − φαφανφµ − φαφαµφν + δµνφαφβφαβ . (6)

This is seen to be conserved,
∂µΘ(2)

µν = φν E2 [φ] , (7)

upon using the field equation that follows from locally extremizing A, 0 = δA/δφ = −E2 [φ], where

E2 [φ] ≡ φααφββ − φαβφαβ . (8)

Now, this Θ
(2)
µν is not traceless. Consequently, the usual form of the scale current, xαΘ

(2)
αµ, is not

conserved. On the other hand, the action (1) is homogeneous in φ and its derivatives, and is
clearly invariant under the scale transformations x → sx and φ (x) → s(4−n)/3φ (sx). Hence the
corresponding Noether current must be conserved. This current is easily found, especially for
n = 4, so let us restrict our attention to four spacetime dimensions in the following.
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In that case the trace is obviously a total divergence:

Θ(2) ≡ δµνΘ
(2)
µν = ∂α

(
φαφβφβ

)
. (9)

That is to say, for n = 4 the virial is the trilinear Vα = φαφβφβ. So a conserved scale current is
given by the combination,

Sµ = xαΘ(2)
αµ − φαφαφµ . (10)

Interestingly, this virial is not a divergence modulo a conserved current, so this model is not con-
formally invariant despite being scale invariant. Be that as it may, it is not our principal concern
here.
Our interest here is that the nonzero trace suggests an additional interaction where φ couples

directly to its own Θ(2). This is similar to coupling a conventional massive scalar to the trace of
its own energy-momentum tensor. In that previously considered example, however, the consistent
coupling of the field to its trace required an iteration to all orders in the coupling. Upon summing
the iteration and making a field redefinition, the Nambu-Goldstone model emerged. But, for the
simplest galileon model in four spacetime dimensions, (1), a consistent coupling of field and trace
is much easier to implement. No iteration is required. The first-order coupling alone is consistent,
after integrating by parts and ignoring boundary contributions, so that

− 1
4

∫
φ ∂α

(
φαφβφβ

)
d4x = 1

4

∫
φαφαφβφβ d

4x . (11)

Consistency follows because (11) gives an additional contribution to the energy-momentum tensor
which is traceless, in 4D spacetime:

Θ(3)
µν = φµφνφαφα − 1

4
δµνφαφαφβφβ , Θ(3) = 0 . (12)

Coupling φ to its own trace may impact the Vainstein mechanism by changing the effective coupling
of Θ(matter) to both backgrounds and fluctuations in φ. But we leave this as an exercise.
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A model with additional quartic self-coupling

Based on these elementary observations, we consider a model with action

A =

∫ (
1
2
φαφα − 1

2
λφαφαφββ − 1

4
κφαφαφβφβ

)
d4x , (13)

where for the Lagrangian L we take a mixture of three terms: the standard bilinear, the trilinear
galileon, and its corresponding quadrilinear trace-coupling. The quadrilinear is reminiscent of the
Skyrme term in nonlinear σ models although here the topology would appear to be always trivial.
The second and third terms in A are logically connected, as we have indicated. But why include

in A the standard bilinear term? The reasons for including this term are to soften the behavior
of solutions at large distances, as will be evident below, and also to satisfy Derrick’s criterion for
classical stability under the rescaling of x. Without the bilinear term in L the energy within
a spatial volume would be neutrally stable under a uniform rescaling of x, and therefore able to
disperse.
Similarly, for positive κ, the last term in A ensures the energy density of static solutions is always

bounded below under a rescaling of the field φ, a feature that would not be true if κ = 0 but λ 6= 0.
So, we only consider κ > 0 in the following. But before discussing the complete Θµν for the model,
we note that we did not include in A a term coupling φ to the trace of the energy-momentum due
to the standard bilinear term, namely,

∫
φΘ(1)d4x, where

Θ(1)
µν = φµφν − 1

2
δµνφαφα , Θ(1) = −φαφα . (14)

We have omitted such an additional term in A solely as a matter of taste, thereby ensuring that L
is invariant under constant shifts of the field. Among other things, this greatly simplifies the task
of finding solutions to the equations of motion.
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The field equation of motion for the model is 0 = δA/δφ = −E [φ], where

E [φ] ≡ φαα − λ
(
φααφββ − φαβφαβ

)
− κ

(
φαφβφβ

)
α
. (15)

As expected, this field equation is second-order, albeit nonlinear. Also note, under a rescaling of
both x and φ, nonzero parameters λ and κ can be scaled out of the equation. Define

φ (x) =
λ

κ
ψ

(√
κ

λ2
x

)
. (16)

Then the field equation for ψ (z) becomes

ψαα −
(
ψααψββ − ψαβψαβ

)
−
(
ψαψβψβ

)
α

= 0 , (17)

where ψα = ∂ψ (z) /∂zα, etc. In effect then, if both λ and κ do not vanish, it is only necessary to
solve the model’s field equation for λ = κ = 1.
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Static solutions

For static, spherically symmetric solutions, φ = φ (r), the field equation of motion becomes

0 =
1

r2
d

dr

(
r2
(
φ′ + λ

2

r
(φ′)

2
+ κ (φ′)

3

))
. (18)

where φ′ = dφ/dr. This is immediately integrated once to obtain a cubic equation,

r2φ′ + 2λr (φ′)
2

+ κr2 (φ′)
3

= C , (19)

where C is the constant of integration. Now, without loss of generality (cf. (16) and (17)) we may
choose λ > 0. Then, if C = 0, either φ′ vanishes, or else there are two solutions that are real only

within a finite sphere of radius r =
√
λ2/κ. These two “interior”solutions are given exactly by

φ′± = − 1

rκ

(
λ±

√
λ2 − r2κ

)
. (20)

Note that these solutions always have φ′ < 0 within the finite sphere.
Otherwise, if C 6= 0, then examination of the cubic equation for small and large |φ′| determines

the asymptotic behavior of φ′ for large and small r. In particular, there is only one type of
asymptotic behavior for large r:

φ′ ∼
r→∞

C

r2
for either sign of C . (21)
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However, there are two types of behavior for large |φ′|, corresponding to small r. The solutions
which are real for all r > 0 have small and large r behavior given by either

φ′ ∼
r→0

√
C

2λr
and φ′ ∼

r→∞

C

r2
for C > 0, (22)

or else

φ′ ∼
r→0

−2λ

κr
and φ′ ∼

r→∞

C

r2
for C < 0. (23)

From further inspection of the cubic equation to determine the behavior of φ′ for intermediate
values of r, when C > 0 it turns out that φ′ is a single-valued, positive function for all r > 0,
joining smoothly with the asymptotic behaviors given in (22). However, it also turns out there is
an additional complication when C < 0. In this case there is a critical value

(
κ3/2/λ2

)
Ccritical =

−4
√

3/27 ≈ −0.2566 such that, if C ≤ Ccritical then φ
′ is a single-valued, negative function for all

r > 0, while if Ccritical < C < 0 then φ′ is triple-valued for an open interval in r > 0. It is not
completely clear to us what physics underlies this multivalued-ness for some negative C. But in
any case, when C < 0 it is also true that φ′ joins smoothly with the asymptotic behaviors given in
(23). All this is illustrated in Figures 1 and 2, for λ = κ = 1.
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ψ′ (r) for C = +1/4N , with N = 0, 1, 2, 3 for top to bottom curves, respectively.
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ψ′ (r) for C = −1/2N , with N = 6, 5, 4, 3, 2, 1, 0 from left to right, respectively. The thin black
curve is a union of the two C = 0 solutions in (20).

For the solutions described by (22) and (23), the total energy outside any large radius is obviously
finite for both C > 0 and C < 0. And if C > 0, the total energy within a small sphere surrounding
the origin is also manifestly finite. But if C < 0 the energy within that same small sphere could
be infinite unless there is a cancellation between the galileon term and the trace interaction term.
Remarkably, this cancellation does occur. So both C > 0 and C < 0 static solutions for the model
have finite total energy.
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Energy considerations

Complete information about the distribution of energy is provided by the model’s energy-momentum
tensor,

Θµν = Θ(1)
µν − λΘ(2)

µν − κΘ(3)
µν . (24)

As expected, this is conserved, given the field equation E [φ] = 0, since

∂µΘµν = φνE [φ] . (25)

The energy density for static solutions differs from the canonical energy density for such solutions
(namely, −L) by a total spatial divergence that arises from the galileon term:

Θ00 = − L|static − 1
2
λ
−→∇ ·

(
(∇φ)2

−→∇φ
)
. (26)

This divergence will not contribute to the total energy for fields such that limr→∞ (φ/ ln r) exists.
Assuming that is the case, Derrick’s scaling argument for static, finite energy solutions of the
equations of motion shows the energy is just twice that due to the bilinear Θ

(1)
00 . Thus,

E =

∫
Θ00 d

3r =

∫ (−→∇φ)2 d3r . (27)
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For the spherically symmetric static solutions of (19), this becomes an expression of the energy
as a function of the parameters and the constant of integration C:

E [λ, κ, C] = 4π

∫ ∞
0

(φ′)
2
r2dr . (28)

Again without loss of generality, consider λ = κ = 1. Then for either C > 0 or for C < Ccritical < 0,
change integration variables from r to s ≡ φ′ to find:1

E (C ≷ 0) = I (|C|)∓
(
|C|+ 1

2
π
)
, (29)

I (C > 0) ≡ 1
2

∫ ∞
0

P (s, C) ds

(s2 + 1)4
√
s4 + s (s2 + 1)C

, (30)

where the numerator of the integrand is an eighth-order polynomial in s, namely,

P (s, C) = 8s8 + 12Cs7 +
(
3C2 − 8

)
s6 + 8Cs5 + 7C2s4 − 4Cs3 + 5C2s2 + C2 . (31)

Thus, I (C) is an elliptic integral. But rather than express the final result in terms of standard
functions, it suffi ces here just to plot E (C), in Figure 3. Note that E increases monotonically with
|C|.

1The multivalued behavior of any solution for Ccritical < C < 0 makes the determination of the total energy
ambiguous, at best, for these cases. This is an unresolved issue.
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E C

E (±C) versus C ≥ 0 as lower/upper curves (the horizontal line is E (Ccritical) ≈ 3.7396).

For other values of λ and κ with the constant of integration C specified as in (19), the energy
of the solution is given in terms of the function defined by (29,30):

E [λ, κ, C] =
(
λ3/κ5/2

)
E
(
κ3/2C/λ2

)
. (32)

The energy curves indicate double degeneracy in E, for different values of |C|, when E [λ, κ, C] >
πλ3/κ5/2. Also, for a given |C| the negative C solutions are higher in energy, with E [λ, κ,− |C|]−
E [λ, κ, |C|] = πλ3/κ5/2 + 2 |C|λ/κ. Or at least this is true for all |C| ≥ |Ccritical| in which case
E [λ, κ, C] ≥ λ3

κ5/2
E
(
κ3/2

λ2
Ccritical

)
≈ 3.7396 λ3/κ5/2.
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A test particle coupled by φΘ(matter) to any of these galileon field configurations would see an
effective potential which is not 1/r, for intermediate and small r. Therefore its orbit would show
deviations from the usual Kepler laws, including precession that is possibly at variance with the
predictions of conventional general relativity. It would be interesting to search for such effects, say,
by considering stars orbiting around the galactic center. In fact, experimenters have been engaged
in searches of this type for some time ...

Webpage
Video
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http://www.astro.ucla.edu/~ghezgroup/gc/research/S02_S0102_orbits.html
http://www.astro.ucla.edu/~ghezgroup/gc/pictures/orbitsMovie.shtml


From Ghez et al., The Shortest-Known—Period Star Orbiting Our Galaxy’s Supermassive Black
Hole, Science 5 October 2012: vol. 338 no. 6103 pp 84-87. The orbits of S0-2 (black) and S0-102
(red). RA, right ascension; DEC, declination. Both stars orbit clockwise. The data points for S0-2
range from the year 1995 to 2012, and S0-102’s detections range from 2000 to 2012. Although the
best-fit orbits are not closing, the statistically allowed sets of orbital trajectories are consistent
with a closed orbit. S0-102 has an orbital period of 11.5 years, 30% shorter than that of S0-2.

Science article
Supplementary material
d = 0.4

360×60×60 × 2π × 27000 = 0.05 ly
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General relativistic effects

If the simple trace-coupled Galileon model is coupled minimally to gravitation (GR) the resulting
system admits spherically symmetric static solutions with naked spacetime curvature singularities.
We have discussed the effects of coupling a Galileon to its own energy-momentum trace in the

flat spacetime limit. Here, general relativistic effects are taken into consideration and additional
features of this same model are explored in curved spacetime. The main point to be emphasized
is that there can be solutions with naked singularities when the energy in the scalar field is finite
and not too large, and for which the effective mass of the system is positive. Thus for the simple
model at hand there is an open set of physically acceptable scalar field data for which curvature
singularities are not hidden inside event horizons. This would seem to have important implications
for the cosmic censorship conjecture of Penrose. It is worthwhile to note that, in general, naked
singularities have observable consequences that differ from those due to black holes.

Minimal coupling to gravity

The scalar field part of the action in curved space is

A =
1

2

∫
gαβφαφβ

(
1− 1√−g ∂µ

(√
−ggµνφν

)
− 1

2
gµνφµφν

)√
−g d4x . (33)

This gives a symmetric energy-momentum tensor Θαβ for φ upon variation of the metric.

δA = 1
2

∫ √
−g Θαβ δg

αβ d4x , (34)

Θαβ = φαφβ
(
1− gµνφµφν

)
− 1

2
gαβ g

µνφµφν
(
1− 1

2
gρσφρφσ

)
− φαφβ 1√

−g∂µ
(√
−ggµνφν

)
+ 1

2
∂α
(
gµνφµφν

)
φβ + 1

2
∂β
(
gµνφµφν

)
φα − 1

2
gαβ∂ρ

(
gµνφµφν

)
gρσφσ .

(35)
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It also gives the field equation for φ upon variation of the scalar field, E [φ] = 0, where

δA = −
∫ √
−g E [φ] δφ d4x , (36)

E [φ] = ∂α
[
gαβφβ

√
−g − gαβφβ gµνφµφν

√
−g − gαβφβ∂µ

(√
−ggµνφν

)
+ 1

2

√
−ggαβ∂β

(
gµνφµφν

)]
.

(37)

Since E [φ] is a total divergence, it easily admits a first integral for static, spherically symmetric
configurations. Consider only those situations in the following.

Static spherical solutions

For such configurations the metric in generalized Schwarzschild coordinates is

(ds)2 = eN(r) (dt)2 − eL(r) (dr)2 − r2 (dθ)2 − r2 sin2 θ (dϕ)2 . (38)

Thus for static, spherically symmetric φ, with covariantly conserved energy-momentum tensor (35),
Einstein’s equations reduce to just a pair of coupled 1st-order nonlinear equations:

r2Θ t
t = e−L (rL′ − 1) + 1 , (39)

r2Θ r
r = e−L (−rN ′ − 1) + 1 . (40)

These are to be combined with the first integral of the φ field equation in this situation. Defining

η (r) ≡ e−L(r)/2 , $ (r) ≡ η (r)φ′ (r) , (41)

that first integral becomes

Ce−N/2

r2
= $

(
1 +$2

)
+

1

2

(
N ′ +

4

r

)
η$2 , (42)
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where for asymptotically flat spacetime the constant C is given by limr→∞ r
2φ′ (r) = C. Then

upon using

Θ t
t = Θ θ

θ = Θ ϕ
ϕ = 1

2
$2
(
1 + 1

2
$2
)
− η$2$′ , (43)

Θ r
r = −1

2
$2
(
1 + 3

2
$2
)
− 1

2
η$3

(
N ′ + 4

r

)
, (44)

the remaining steps to follow are clear.
First, for C 6= 0, one can eliminate N ′ from (40) and (42) to obtain an exact expression for N

in terms of η, $, and C:

eN/2 =
8C

r$

η − 1
2
r$3

(4$ − 2r2$3 − r2$5 + 8rη + 12$η2 + 8r$2η)
. (45)

(cf. the lapse function, N = eN/2) If the numerator of this last expression vanishes there is an
event horizon, otherwise not. When η = 1

2
r$3 the denominator of (45) is positive definite.

Next, in addition to (39) one can now eliminate N from either (40) or (42) to obtain two coupled
first-order nonlinear equations for η and $. These can be integrated, at least numerically. Or they
can be used to determine analytically the large and small r behaviors, hence to see if the energy
and curvature are finite. For example, again for asymptotically flat spacetime, it follows that

eL/2 ∼
r→∞

1 +
M

r
+

1

4

(
6M2 − C2

) 1

r2
+

1

2
M
(
5M2 − 2C2

) 1

r3
+O

(
1

r4

)
, (46)

eN/2 ∼
r→∞

1− M

r
− 1

2
M2 1

r2
+

1

12
M
(
C2 − 6M2

) 1

r3
+O

(
1

r4

)
, (47)

$ ∼
r→∞

C

r2

(
1 +

M

r
+

3

2
M2 1

r2

)
+O

(
1

r5

)
, (48)

for constant C and M .
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To date the details of the two remaining first-order ordinary differential equations are not pretty,
but the equations are numerically tractable. In terms of the variables defined in (41), in light of
(45), Einstein’s equation (40) becomes

F (r,$, η) r
d

dr
$ +G (r,$, η) r

d

dr
η = H (r,$, η) , (49)

F (r,$, η) = −4η
[
2r3$6 + 3r3$8 + 16$η + 4r$4

+16rη2 + 48$η3 + 48r$2η2 + 12r$4η2 − 12r2$5η
]
, (50)

G (r,$, η) = 8η$2
[
2r2$2 + 3r2$4 − 12η2 + 12r$3η + 4

]
, (51)

H (r,$, η) = $
[
8η$

(
4r$3 − 4η + 2r2$2η + 3r2$4η + 12r$3η2 − 12η3

)
+
(
4 + 3r2$4 + 2r2$2 + 12η2

) (
4$ − r2$5 − 2r2$3 + 8r$2η + 8rη + 12$η2

)]
,
(52)

while Einstein’s equation (39) becomes

I (r,$, η) r
d

dr
$ + J (r,$, η) r

d

dr
η = K (r,$, η) , (53)

I (r,$, η) = rη$2 , (54)

J (r,$, η) = −2η , (55)

K (r,$, η) = 1
2
r2$2

(
1 + 1

2
$2
)

+ η2 − 1 . (56)
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Numerical results

As a representative example with $ > 0, (53) and (49) were integrated numerically to obtain the
results shown in the Figure, for data initialized as $|r=1 = 0.5 and η|r=1 = 1.

10 8 6 4 2 0 2 4

1

2

s

For initial values $(s)|s=0 = 0.5 and η(s)|s=0 = 1.0, dφ/dr = $/η is shown in red, eL = 1/η2 in
green, and eN in blue, where r = es. For comparison, Schwarzschild eL and eN are also shown as

resp. green and blue dashed curves for the same M ≈ 0.21.

Evidently it is true that η (r) 6= 1
2
r$3 (r) for this case, so eN(r) does not vanish for any r > 0 and

there is no event horizon.
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However, there is a geometric singularity at r = 0 with divergent scalar curvature: limr→0 r
3/2R =

const. Since R = −Θ µ
µ , and limr→0$ is finite, this divergence in R comes from the last term in

(44), which in turn comes from the second term in A, i.e. the covariant ∂φ∂φ∂2φ in (33). In fact, it
it not diffi cult to establish analytically for a class of solutions of the model, for which the example
in the Figure is representative, the following limiting behavior holds.

lim
r→0

(
eL/2/

√
r
)

= ` , lim
r→0

(√
reN/2

)
= n , lim

r→0
$ = p , lim

r→0

(
φ′/
√
r
)

= p` , (57)

where `, n, and p are constants related to the constant C in (42):

2C = 3np2/` . (58)

It follows that for solutions in this class,

lim
r→0

r3/2R = pC/n . (59)

For the example shown in the Figure: ` ≈ 1.5, n ≈ 0.086, p ≈ 3.3, C ≈ 0.94, and pC/n ≈ 36.
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The energy contained in only the scalar field in the curved spacetime is given by

EGalileon =

∫ ∞
0

H (r) dr =

∫ ∞
−∞

esH (es) ds , (60)

H (r) ≡ 4πr2eL/2eN/2Θ t
t = 2πe2seL/2eN/2$2 (s)

(
1 + 1

2
$2 (s)

)
− 4πeseN/2$2 (s) d

ds
$ (s) . (61)

For the above numerical example, the integrand esH (es) is shown in the following Figure.

10 8 6 4 2 0 2 4

1

2

3

s

esH (es) for $ (s)|s=0 = 0.5 and η (s)|s=0 = 1.0, where r = es.

Evidently, EGalileon is finite in this case. It is also clear from the Figures that the Galileon field has
significant effects on the geometry in the vicinity of the peak of its radial energy density.
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Other numerical examples

For the same η|r=1 = 1, further numerical results show there are also curvature singularities without
horizons for smaller $|r=1 > 0, but event horizons are present for larger scalar fields (roughly when
$|r=1 > 2/3). A more precise and complete characterization of the data set {$|r=1 , η|r=1} for
which there are naked singularities is given below, but it is already evident from the preceding
remarks that the set has nonzero measure. Here are additional plots for η(s)|s=0 = 1.0 and various
initial values $(s)|s=0. As before, dφ/dr = $/η is shown in red, eL = 1/η2 in green, and eN in
blue, where r = es. For comparison, Schwarzschild eL and eN are also shown as resp. green and
blue dashed curves for the same M , as given in the Figure labels.
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Initial values $(s)|s=0 = 0.100 and η(s)|s=0 = 1.00
corresponding to M = 0.00358 and C = 0.121
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Initial values $(s)|s=0 = 0.200 and η(s)|s=0 = 1.00
corresponding to M = 0.0191 and C = 0.283
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Initial values $(s)|s=0 = 0.300 and η(s)|s=0 = 1.00
corresponding to M = 0.0546 and C = 0.484
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Initial values $(s)|s=0 = 0.400 and η(s)|s=0 = 1.00
corresponding to M = 0.117 and C = 0.710
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Initial values $(s)|s=0 = 0.500 and η(s)|s=0 = 1.00
corresponding to M = 0.209 and C = 0.936
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Initial values $(s)|s=0 = 0.600 and η(s)|s=0 = 1.00
corresponding to M = 0.326 and C = 1.13
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Initial values $(s)|s=0 = 0.700 and η(s)|s=0 = 1.00
corresponding to M = 0.453 and C = 1.26
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Initial values $(s)|s=0 = 0.800 and η(s)|s=0 = 1.00
corresponding to M = 0.573 and C = 1.32

For each of the last two plots, the numerical integration of the coupled galileon-GR equations
has encountered a mathematical (as opposed to physical?) singularity and terminated, resp. at
r ≈ e−2.5 = 0.082 and r ≈ e−1.3 = 0.27, as is indicative of an horizon for which eN = 0. This
feature persists for initial data with larger values of $(s)|s=0, when η(s)|s=0 = 1.
Here are two more cases, just below and just above the point where horizons are formed. Again,

for the second of these plots, the numerical integration of the coupled galileon-GR equations has
encountered a mathematical singularity, and terminated at the point where eN(r) (blue curve) van-
ishes.
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Initial values $(s)|s=0 = 0.645 and η(s)|s=0 = 1.00 corresponding to M = 0.383 and C = 1.199
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Initial values $(s)|s=0 = 0.652 and η(s)|s=0 = 1.00 corresponding to M = 0.392 and C = 1.209

A useful test for an horizon is provided by the numerator of eN in (45). Define the discriminant

disc (r) = 1− r $ (r)3

2 η (r)
. (62)

Should this vanish at some radius for which η (r) is finite, then at that radius eN(r) = 0, thereby
indicating an horizon at that radius. The critical case, separating solutions with naked singularities
from those with event horizons, has the small r limiting behavior η (r) ∼

r→0
r $3 (r), such that the

discriminant disc ∼
r→0

1
2
as illustrated here for specific data.
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The discriminant disc = 1− 1
2
r$3/η versus s = ln r for various $|r=1 (namely, 0.4, 0.5, 0.6, 0.64,

critical, 0.66, and 0.7) with η|r=1 = 1. The critical initial value for the separatrix, for which
disc ∼

r→0
1/2, is $|r=1 = 0.6500 · · · .

For initial data giving rise to naked singularities, disc > 1/2 (cf. the upper curves in the figure
above), while for data leading to horizons, eN vanishes at the horizon radius, and therefore at that
radius disc = 0 (cf. the lower two curves in the figure). When the limiting critical behavior
η (r) ∼

r→0
r $3 (r) is inserted into the differential equations (53) and (49) we find the power law

behavior:

ηcritical (r) ∼
r→0

c3r−4/5 , $critical (r) ∼
r→0

cr−3/5 , φ′critical (r) ∼
r→0

r1/5

c2
. (63)

Moreover, critical cases are easily determined numerically for various initial data, {$(s)|s=0 , η(s)|s=0},
thereby allowing determination of a curve that separates the open set of initial data that exhibits
naked singularities from the set that exhibits event horizons.
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Censored and naked phases

The situation for a portion of the initial data plane is as follows.

0.0 0.2 0.4 0.6 0.8 1.0

0.8

0.9

1.0

1.1

1.2

varpi

eta

Naked singularities

Event horizons

($|r=1 , η|r=1) boundary separating initial data that exhibit naked singularities from data that
exhibit horizons. The curve is a fourth-order polynomial fit to the numerically computed critical

points (dots), namely, ηfit ($) = 1 + 0.0255538$ − 1.34405$2 + 2.20589$3 − 0.304933$4.

This shows naked singularities for the model exist for an initial data set of non-zero measure, and
are actually encountered for a significant portion of the initial data plane.
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A similar demarcation between naked/censored solutions can be presented in terms of asymptotic
r → ∞ data instead of initial r = 1 data. With M and C defined as in (46), (47), and (48), we
find the following curve separating the two types of solutions. Solutions for points above the red
curve have naked singularities, while solutions for points below that curve have event horizons.

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

M

C

Naked singularities

Event horizons

Horizons with r >1

Computed points (red circles) and an interpolating curve (solid red) separating the r →∞
asymptotic data for solutions with naked singularities from that for solutions with event horizons.

By imposing the same η(s)|s=0 initial condition for various values of $(s)|s=0, the numerical
data also shows that the corresponding C (M) has a local maximum, and hence M (C) becomes
double-valued near that point.
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For example, when η(s)|s=0 = 1 the local maximum for C (M) is near $(s)|s=0 ≈ 0.78. By
examining larger $(s)|s=0 for the same η(s)|s=0, it is apparent that C (M) can also be double-
valued. All this is evident in a parametric plot of the corresponding (C,M) points on the data
plane. For example, for η(s)|s=0 = 1 and various $(s)|s=0 ∈

[
0.1, 1.259 92 = 3

√
2
]
, we find the

naked (green circle) and censored (black circle) data as included in the last figure, with a fitted
interpolating curve (orange dashes) connecting the computed points. In this numerical analysis,
care should be taken not to have $(s)|s=0 larger than 3

√
2 η(s)|s=0 because otherwise this would

place data initialized at r = 1 within the horizon. The horizon is exactly at the radius r = 1 when
$(s)|s=0 = 3

√
2 η(s)|s=0. The gray curve in the last figure is the image of $(s)|s=0 = 3

√
2 η(s)|s=0 on

the (M,C) plane. Points below this gray curve can be investigated numerically using Schwarzshild
coordinates but only if the initial data is specified for r > 1, i.e. outside the horizon. (Also
note the portion of the initial data plane shown in the previous figure lies entirely above the curve
η(s)|s=0 = 1

2
$3(s)|s=0, so all initial data points in that figure lie outside of any horizons.)

37



Conclusions

In conclusion, as previously emphasized by many authors it would be interesting to search for evi-
dence of galileons at all distance scales, including galactic and sub-galactic, as well as cosmological.
Perhaps a combination of trace couplings and various galileon terms will ultimately lead to a real-
istic physical model. In particular, it is important to investigate the stability of galileon solutions
and to consider the dynamical evolution of generic galileon and other matter field initial data to
determine under what physical conditions naked singularities might actually form.
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