
Lecture 1

The Schwarzschild Metric

1.1 THE CURVATURE OF STATIC SPHERICAL SPACETIMES

The most general static, spherically symmetric metric can be written in the form

ds2 = −N2(r) dt2 + F−2(r) dr2 + r2 dθ2 + r2 sin2 θ dφ2, (1.1)

provided we assume that the one-form dr vanishes nowhere. The coordinate t here
is unique static time coordinate, normalized so that its derivative along the static
Killing field is unity, while the coordinate r is the areal radius. We can easily read
off from this the orthonormal basis

eα =


N dt

F−1 dr
r dθ

r sin θ dφ

 (1.2)

of co-vector fields. The concrete index α here takes the values t, r, θ, φ, and we have
written the corresponding basis fields in that order in the column. Since the dual
basis is diagonal in the sense that each basis field eα is proportional to the gradient
dxα of the corresponding coordinate, it is easy to read off the vector basis

eα =


N−1 ∂t

F ∂r

r−1 ∂θ

r−1 csc θ ∂φ

 . (1.3)

One can verify immediately that eα(eβ) = δβ
α here. Furthermore, the matrix of inner

products is also clearly

ηαβ =


−1

1
1

1

 (1.4)

This confirms that (1.2) is indeed an orthonornal basis.
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2 Lecture 1: The Schwarzschild Metric

Our goal is to calculate the Einstein tensor for metrics of the form (1.1), so
that we may solve the Einstein equation. We do this in the Cartan approach.
Conceptually, the first step to calculating the curvature of spacetime is to find the
metric connection ∇a whose curvature it is. In Cartan’s approach, we do this by
solving the relation

ηαβ deβ =


−N ′ dr ∧ dt

0
dr ∧ dθ

sin θ dr ∧ dφ + r cos θ dθ ∧ dφ

 = −ωαβ ∧


N dt

F−1 dr
r dθ

r sin θ dφ

 (1.5)

for the unique anti-symmetric matrix ωαβ of Cartan connection forms. While the
question of the Cartan matrix does have a unique answer, the process to find that
answer is a bit more an art than a science.

Exercise 1.6: Determine the matrix ωαβ of Cartan connection forms from (1.5).

Solution: To illustrate how this process works in general, let us first write the Cartan matrix in
the completely generic form

−ωαβ =

0BB@
0 {trθφ} {trθφ} {trθφ}

−{trθφ} 0 {trθφ} {trθφ}
−{trθφ} −{trθφ} 0 {trθφ}
−{trθφ} −{trθφ} −{trθφ} 0

1CCA , (1.6a)

where the notation {trθφ} means that there is an unknown one-form with all four components
undetermined in each of these slots. We have used the antisymmetry of ωαβ to set the diagonal
terms to zero.

Let’s focus now on the first row of (1.5). We need to get a term proportional to dt ∧ dr, and
this could come either from a term proportional to dr in the top left entry of ωαβ , or from a term
proportional to dt in the term to its right. Since the top left entry vanishes by anti-symmetry, only
the latter option remains, so

−ωαβ =

0BB@
0 FN ′ dt + {rθφ} {rθφ} {rθφ}

−FN ′ dt− {rθφ} 0 {trθφ} {trθφ}
−{rθφ} −{trθφ} 0 {trθφ}
−{rθφ} −{trθφ} −{trθφ} 0

1CCA . (1.6b)

We have also used the absence of terms proportional to dt ∧ dθ or dt ∧ dφ in the first row on the
left side of (1.5) to eliminate terms proportional to dt in the remaining entries in the first row of
ωαβ . We then used anti-symmetry to simplify the first column accordingly.

Now apply the same trick to the other rows of ωαβ : the only way to get two-forms proportional
to dxα in row α is if they come from ωαβ with other values of β. This lets us read off

−ωαβ =

0BB@
0 FN ′ dt + {θφ} {rθφ} {rθφ}

−FN ′ dt− {θφ} 0 {tθφ} {tθφ}
−{rφ} −F dθ − {trφ} 0 {trφ}
−{rθ} −F sin θ dφ− {trθ} − cos θ dφ− {trθ} 0

1CCA . (1.6c)

Then reassert anti-symmetry to simplify further:

−ωαβ =

0BB@
0 FN ′ dt + {θφ} {rφ} {rθ}

−FN ′ dt− {θφ} 0 Fdθ + {tφ} F sin θ dφ + {tθ}
−{rφ} −F dθ − {tφ} 0 cos θ dφ + {tr}
−{rθ} −F sin θ dφ− {tθ} − cos θ dφ− {tr} 0

1CCA . (1.6d)
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This ends the easy part of the calculation.
There are obviously many undetermined components remaining in (1.6d), and these are related

to one another in various ways. For example, the coefficient of dr in the top right entry ωtφ here
must cancel against the coefficient of dφ in ωtr two columns to its left since the dt term in ωtr

already gives us the correct result on the left side of (1.5). This, in turn, dictates the coefficient
of dφ in ωrt by anti-symmetry, which then must cancel against the coefficient of dt in ωrφ three
columns to its right. This determines the coefficient of dt in ωφr by anti-symmetry, and thence the
coefficient of dr in ωφt, which determines the coefficient of dr in ωtφ by anti-symmetry. We are
now back where we started, with the dr part of ωrφ, and rearranging terms should yield a soluble
equation for the dr part of ωtr since the Cartan matrix is unique. In fact, since each equation in this
chain was a simple proportionality, the unique solution must be zero, and all of the intermediate
expressions must vanish as well.

But there is an easier way to finish this calculation, which is simply to guess the right answer.
Indeed, it is striking that we already have known terms in (1.6d) that suffice to give the entire left
side of (1.5). Motivated by this, we check that0BB@

0 FN ′ dt 0 0
−FN ′ dt 0 F dθ F sin θ dφ

0 −F dθ 0 cos θ dφ
0 −F sin θ dφ − cos θ dφ 0

1CCA ∧

0BB@
N dt

F−1 dr
r dθ

r sin θ dφ

1CCA

=

0BB@
N ′ dt ∧ dr

0
−dθ ∧ dr

− sin θ dφ ∧ dr − r cos θ dφ ∧ dθ

1CCA . (1.6e)

The right side here is exactly the left side of (1.5) due to the anti-symmetry of the wedge product.
Thus, the since the Cartan matrix is unique, −ωαβ must equal the matrix on the left side of (1.6e).

Comment : In general, one does not use the notation {trθφ} to indicate the presence of undeter-
mined components of forms in the Cartan process. It is generally better to “tinker,” filling in entries
using the first principle above—that the only way to get two-forms proportional to dxα in row α of
deα is if they come from other values of β in the matrix ωαβ—and then imposing anti-symmetry.
In general, this will not produce the answer immediately, as it has here, but some additional cor-
rections to other entries will be needed to compensate for terms brought in by anti-symmetrization.
Generally, however, an answer emerges after only one or two more iterations. One would be wise,
however, always to check the final result, as we have done in (1.6e).

Exercise 1.7: Calculate the matrix of Cartan connection forms directly from the formula

Cabc = Ta[bc] − 1
2

Tbca (1.7a)

for the difference tensor relating the metric connection ∇a to the basis connection Da associated
with the orthonormal basis ea

α. Here, Tabc denotes the torsion

Tab
c = −eα

a eβ
b [eα, eβ ]c (1.7b)

of Da, with its last index lowered using the metric.

Solution: The components Tαβ
c of the torsion tensor are given simply by the matrix

−T (eα, eβ) = [eα, eβ ] =

0BB@
[et, et] [et, er] [et, eθ] [et, eφ]
[er, et] [er, er] [er, eθ] [er, eφ]
[eθ, et] [eθ, er] [eθ, eθ] [eθ, eφ]
[eφ, et] [eφ, er] [eφ, eθ] [eφ, eφ]

1CCA (1.7c)
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of Lie brackets of the basis vector fields. Note that we have written this so that the first index,
α, runs down the columns the matrix while the second index, β, runs across the rows. These Lie
brackets are all easy enough to calculate:

T (eα, eβ) =

0BB@
0 −FN−2N ′ ∂t 0 0

FN−2N ′ ∂t 0 Fr−2 ∂θ Fr−2 csc θ ∂φ

0 −Fr−2 ∂θ 0 r−2 csc θ cot θ ∂φ

0 −Fr−2 csc θ ∂φ −r−2 csc θ cot θ ∂φ 0

1CCA

=

0BB@
0 −FN−1N ′ et 0 0

FN−1N ′ et 0 Fr−1 eθ Fr−1 eφ

0 −Fr−1 eθ 0 r−1 cot θ eφ

0 −Fr−1 eφ −r−1 cot θ eφ 0

1CCA . (1.7d)

For our calculations, it will be more convenient to lower the remaining abstract index, c:

Tαβc =

0BB@
0 FN−1N ′ et

c 0 0

−FN−1N ′ et
c 0 Fr−1 eθ

c Fr−1 eφ
c

0 −Fr−1 eθ
c 0 r−1 cot θ eφ

c

0 −Fr−1 eφ
c −r−1 cot θ eφ

c 0

1CCA . (1.7e)

Note that the signature of the metric is important here because gab eb
t = −et

a, while the spatial
basis vectors suffer no such change of sign when we lower their abstract indices.

To calculate the Cartan matrix, we must find

ωmαβ = Cmbc eb
α ec

β = Tm[αβ] − 1
2

Tαβm. (1.7f)

We have already found the second term on the right here, but must still calculate the first. We do
this by making the first index, α, on the torsion abstract and the last index, c, concrete. This is
straightforward to do in our matrix notation. We have, for instance,

Taβc = eα
a Tαβc =

`
et

a er
a eθ

a eφ
a

´
Tαβc

=

0BB@
−FN−1N ′ er

a et
c

FN−1N ′ et
a et

c − Fr−1 eθ
a eθ

c − Fr−1 eφ
a eφ

c

Fr−1 er
a eθ

c − r−1 cot θ eφ
a eφ

c

Fr−1 er
a eφ

c + r−1 cot θ eθ
a eφ

c

1CCA
>

. (1.7g)

We have chosen to write eα
a as a row vector here because it then contracts naturally down the

columns of the matrix above. The result of this matrix product is a row vector of contravariant
tensors with two indices. We have written this as the transpose of a column vector to save space.
When we make the last index concrete, we must find a matrix of one-forms. To do this, we take
the matrix product of the column vector we just found with the row vector of basis vector fields
ec

γ , in that order:

Taβγ = Taβc

`
ec

t ec
r ec

θ ec
φ

´

=

0BB@
−FN−1N ′ er

a 0 0 0

FN−1N ′ et
a 0 −Fr−1 eθ

a −Fr−1 eφ
a

0 0 Fr−1 er
a −r−1 cot θ eφ

a

0 0 0 Fr−1 er
a + r−1 cot θ eθ

a

1CCA . (1.7h)

Note that this produces a matrix such that the first concrete index, β in this case, in the tensor
expression on the left once again runs down the columns of the matrix. This will allow us to add
this result to our previous one using the usual laws of matrix addition.
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To complete our calculation, we now take the antisymmetric part of the previous result. Re-
naming indices, we write

Ta[αβ] =
1

2

0BB@
0 −FN−1N ′ et

a 0 0

FN−1N ′ et
a 0 −Fr−1 eθ

a −Fr−1 eφ
a

0 Fr−1 eθ
a 0 −r−1 cot θ eφ

a

0 Fr−1 eφ
a r−1 cot θ eφ

a 0

1CCA . (1.7i)

Remarkably, this tensor is exactly equal to the torsion tensor above. This certainly does not happen
all the time. But in this case, it makes the Cartan matrix very easy to calculate:

ωaαβ = Ta[αβ] − 1
2

Tαβa =

0BB@
0 −FN−1N ′ et

a 0 0

FN−1N ′ et
a 0 −Fr−1 eθ

a −Fr−1 eφ
a

0 Fr−1 eθ
a 0 −r−1 cot θ eφ

a

0 Fr−1 eφ
a r−1 cot θ eφ

a 0

1CCA . (1.7j)

The remainder of the curvature caalculation will be easier if we translate back to differential-forms
notation and suppress the abstract index on the result:

ωαβ =

0BB@
0 −FN ′ dt 0 0

FN ′ dt 0 −F dθ −F sin θ dφ
0 F dθ 0 − cos θ dφ
0 F sin θ dφ cos θ dφ 0

1CCA . (1.7k)

This is the Cartan matrix we seek, and the result is identical to that of the previous exercise.

Comment : This approach to the problem of finding the Cartan matrix is entirely algorithmic.
Presumably, something quite like it underlies the canned routines used by modern computer-algebra
packages to calculate the Riemann tensor on spacetime. The directness of the calculation, however,
is spoiled somewhat by the need to pay very close attention to the association of concrete indices
with matrix entries. The previous approach required somewhat less worry of this sort.

To proceed, we must raise the second index on the Cartan matrix calculated in
the previous exercise using the matrix of inverse metric components, which obviously
has the same form as the metric-ccomponent matrix in (1.4). Since the β index in
(1.6e) runs across the columns of the matrix, this is equivalent to multiplying (1.7k)
by the metric matrix from the right :

ωα
β = ωαγ ηγβ =


0 −FN ′ dt 0 0

−FN ′ dt 0 −F dθ −F sin θ dφ
0 F dθ 0 − cos θ dφ
0 F sin θ dφ cos θ dφ 0

 . (1.8)

This is the key result we need to calculate the curvature of a static, spherically
symmetric spacetime.

The remainder of the calculation is quite mechanical. The two terms needed to
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calculate the Riemann curvature are the exterior derivative

dωα
β =


0 −(FN ′)′ dr ∧ dt

−(FN ′)′ dr ∧ dt 0
0 F ′ dr ∧ dθ
0 F ′ sin θ dr ∧ dφ + F cos θ dθ ∧ dφ

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

0 0
−F ′ dr ∧ dθ −F ′ sin θ dr ∧ dφ− F cos θ dθ ∧ dφ

0 sin θ dθ ∧ dφ
− sin θ dθ ∧ dφ 0

 (1.9)

and the wedge product

(ω ∧ ω)α
β =


0 0
0 0

−F 2N ′ dθ ∧ dt 0
−F 2N ′ sin θ dφ ∧ dt F cos θ dφ ∧ dθ

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

F 2N ′ dt ∧ dθ F 2N ′ sin θ dt ∧ dφ
0 F cos θ dθ ∧ dφ
0 −F 2 sin θ dθ ∧ dφ

−F 2 sin θ dφ ∧ dθ 0

 (1.10)

of connection matrices. The sum of these determines the Riemann matrix Rabα
β of

two-forms to be

Rα
β =


0 (FN ′)′ dt ∧ dr

(FN ′)′ dt ∧ dr 0
F 2N ′ dt ∧ dθ F ′ dr ∧ dθ

F 2N ′ sin θ dt ∧ dφ F ′ sin θ dr ∧ dφ

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

F 2N ′ dt ∧ dθ F 2N ′ sin θ dt ∧ dφ
−F ′ dr ∧ dθ −F ′ sin θ dr ∧ dφ

0 (1− F 2) sin θ dθ ∧ dφ
−(1− F 2) sin θ dθ ∧ dφ 0

 . (1.11)

Our real objective, of course, is to find the Einstein tensor, which entails calculating
the Ricci tensor. To do this, we define the column vector

Raα := Rabα
β eb

β (1.12)

of one-forms. One can easily show that this object equals the Ricci tensor Rab eb
α,

with one index made concrete using the orthonormal basis. However, it is also easy
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to calculate using our matrix results above. We right-multiply the Riemann matrix
(1.11) by the column vector (1.3) of basis vectors, while contracting those vectors
with the second factor in the wedge products in the Riemann matrix. Minding the
anti-symmetry of those wedge products, we get

Rα =


(FN ′)′ F dt + F 2N ′ r−1 dt + F 2N ′ r−1 dt
−(FN ′)′ N−1 dr − F ′ r−1dr − F ′ r−1 dr
−F 2N ′ N−1dθ − F ′ F dθ + (1− F 2) r−1 dθ

−F 2N ′ sin θ N−1 dφ− F ′ sin θ F dφ + (1− F 2) sin θ r−1dφ

 . (1.13)

It is convenient now to collect terms and write the entries of this vector in terms of
the orthonormal basis forms in (1.2). The result is

Rα =


FN−1 r−1 [r(FN ′)′ + 2FN ′] et

−FN−1 r−1 [r(FN ′)′ + 2NF ′] er

−r−2 [rF 2N ′N−1 + rFF ′ − (1− F 2)] eθ

−r−2 [rF 2N ′N−1 + rFF ′ − (1− F 2)] eφ

 . (1.14)

This Ricci tensor is diagonal in the sense that the one-form Rt is proportional to
et and so forth. This should not be surprising since the symmetries of spacetime
should constrain the components of its curvature in much the same way that they do
those of the metric in (1.1). Also note that the coefficients multplying the angular
basis vectors in the last two entries are identical, in accord with spherical symmetry.

The symmetries of the Ricci tensor emerge even more clearly when we write it
out in full abstract index notation:

Rab = Raα eα
b =

F

Nr

(
r
(
FN ′)′ + 2FN ′

)
et
a et

b −
F

Nr

(
r
(
FN ′)′ + 2NF ′

)
er
a er

b

− F

Nr

((
FN

)′ − N

Fr

(
1− F 2

)) (
eθ
a eθ

b + eφ
a eφ

b

)
. (1.15)

This expression allows us to calculate the scalar curvature

R = − 2F

Nr

(
r
(
FN ′)′ + 2

(
FN

)′ − N

Fr

(
1− F 2

))
(1.16)

immediately, and thus to write down the Einstein tensor

Gab := Rab − 1
2 R

(
−et

a et
b + er

a er
b + eθ

a eθ
b + eφ

a eφ
b

)
. (1.17)

Collecting terms, we find the the Einstein tensor has the form

Gab =
1
r2

(
r
(
1− F 2

))′
et
a et

b +
1
r2

(
F 2r

(
lnN2

)′ − (
1− F 2

))
er
a er

b

+
F

Nr

(
r
(
FN ′)′ + (

FN
)′) (

eθ
a eθ

b + eφ
a eφ

b

)
. (1.18)

This holds for any static, spherically symmetric metric (1.1).
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Exercise 1.19: Starting from (1.15), collect terms to show that the Einstein tensor of a static,
spherically symmetric spacetime can indeed be written in the form (1.18).

1.2 THE SCHWARZSCHILD SOLUTION

The Schwarzschild metric is a static, spherically symmetric solution of the vacuum
Einstein equations. It is very nearly unique, having only one free constant of in-
tegration, denoted M . Physically, this represents the overall mass of the static,
spherically symmetric body generating the gravitational field.

When we set Gab = 0 in (1.18), we discover three ordinary differential equations
for the two unknown metric component functions, N(r) and F (r). This seems a
little odd, and we shall return to this conceptual difficulty below. For now, let’s just
start solving the equations. First, we have

0 = Gtt =
1
r2

(
r
(
1− F 2

))′
⇒ F 2(r) = 1− 2M

r
, (1.20)

for some constant M . We have inserted the factor of two in order to recover the
correct Newtonian limit when dimensionless parameter M/r = GM/c2r is small. To
solve for N(r), it is actually easiest to go back to the expression (1.15) for the Ricci
tensor. Since vanishing Einstein tensor implies vanishing Ricci tensor, we have

0 = Rtt + Rrr =
F

Nr

(
2FN ′ − 2NF ′

)
⇒ N ′

N
=

F ′

F
. (1.21)

Thus, we find that N(r) is proportional to F (r), whence

N2(r) = C2

(
1− 2M

r

)
(1.22)

for some constant C. Examining the metric (1.1), we notice that we can absorb this
constant into the definition of the static time coordinate t, setting t 7→ t̃ := Ct. The
vector field ∂t̃ = C−1 ∂t still Lie drags the metric, which then has the form

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2

(
dθ2 + sin2 θ dφ2

)
, (1.23)

where we have dropped the tilde on the rescaled time coordinate. This is the
Schwarzschild metric.


