
Physics 6938 Florida Atlantic University
General Relativity Fall, 2007

Problem Set V
Due: Friday, 7 December 2007

(A date which will live in infamy!)

1. Recall that the extrinsic curvature of a two-dimensional submanifold S of a three-
dimensional Riemannian manifold (Σ, qab) was defined in class to be

κab := −σam∇m r̂b,

where r̂b is the normal to S within Σ and σam is the two-dimensional metric on S. Let
Σ be ordinary Euclidean space, and S a round sphere of radius a. Show that

κab = −a−1 σab.

Hint : Evaluate ∇a∇b r2 in (a) spherical and (b) Cartesian coordinates.

2. Consider the linearized plane gravitational wave hab(x) = Aab eik·x on Minkowski space-
time. Assume that it is in de Donder gauge, so that ka Aab = 0, but not necessarily in
a transverse-traceless gauge.

a. Let ûa be a given time-like unit vector, and define the spatial unit vector k̂a by

ka =: ω
(
ûa + k̂a

)
and ûa k̂a = 0.

In words, k̂a is the unit vector along the direction of propagation for hab(x)
within the spatial slice orthogonal to ûa. Define the projection operator

Pab := ηab + ûa ûb − k̂a k̂b

into the 2-plane orthogonal to both ûa and k̂a. Show that

hTT
ab(x) := ATT
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is a plane-wave solution of the homogeneous wave equation of linearized gravity,
and that it obeys the complete set of transverse-traceless gauge conditions in the
frame defined by ûa, including the de Donder condition, as defined in class. As
the notation suggests, this operation projects out the transverse-traceless part
of a plane wave initially given in an arbitrary (but de Donder) gauge.

b. Show that the transverse-traceless part of the wave amplitude may also be cal-
culated from the formula
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]
Amn,

where η̄ab := ηab + ûa ûb denotes the spatial metric. Note that the first operator
to act on Amn yields the traceless part of its spatial projection.



3. Define the right- and left-handed circular polarization tensors by

e	

ab := 1√
2

(
e+
ab + i e×ab

)
and e�

ab := 1√
2

(
e+
ab − i e×ab

)
,

respectively. Consider a right-circularly-polarized gravitational plane wave with ampli-
tude A propagating along the +z-direction. It is incident on a pair of non-accelerating
particles separated by a distance d along the x-axis in the Minkowski background. Show
that each particle moves in a right-handed circle relative to the other, as seen from above.
What is the radius of that circle? What changes for a left-circularly-polarized wave?
Hint : Recall that one must take the real part of the complex expression for the wave.

4. Consider a pair of identical point particles of mass m orbiting one another with frequency
ω in a circle of radius a about the origin in the xy-plane.

a. Write the energy density of the source in terms of delta functions and show that
the resulting trace-reversed metric perturbation field is

hab(t, ~r) =
8m

r
ua ub −
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[
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.

Here, e+z
ab and e×z

ab are the “plus” and “cross” polarization tensors defined in
class for waves propagating in the +z-direction.

b. At large radius, the spherical waves produced by the source are very nearly
planar, and we can extract their transverse traceless parts by assuming that the
direction k̂a of propagation in the problems above is identical to the direction r̂a

from the origin to the observation point. Show that an observer on the +z-axis
will observe the wave
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.

That is, an observer above the source will see right-circularly polarized waves.
c. In contrast, show that an observer at large distance along the +x-axis will

measure linearly polarized waves with

hTT
ab(t, rx̂) =
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,

where e+x
ab := êy

a êy
b − êz

a êz
b defines the “plus” polarization along the +x-axis.


