Relativistic Kinematics

Lecture II
General Relativity (PHY 6938), Fall 2007

Copyright © 2007 by Christopher Beetle

Structure of
 Minkowski Space

- There are five kinds of vectors in Minkowski spacetime:
- space-like $\quad\|x\|^{2}>0$
- time-like $\quad\|x\|^{2}<0$
- and light-like. $\|\mathbf{x}\|^{2}=0$
- Time-like and light-like vectors can be either
- future-directed

$$
t_{\mathrm{x}}>0
$$

- or past-directed.
$t_{\mathrm{x}}<0$

$$
\|\mathbf{x}\|^{2}:=-c^{2} t_{\mathbf{x}}^{2}+|\vec{x}|^{2}
$$

Structure of
 Minkowski Space

- There are five kinds of vectors in Minkowski spacetime:
- space-like $\quad\|x\|^{2}>0$
- time-like $\quad\|x\|^{2}<0$
- and light-like. $\|\mathbf{x}\|^{2}=0$
- Time-like and light-like vectors can be either
- future-directed $\quad t_{\mathbf{x}}>0$
- or past-directed. $\quad t_{\mathrm{x}}<0$

$$
\begin{gathered}
t^{\prime}=\gamma\left(t-\vec{v} \cdot \vec{x} / c^{2}\right) \\
|\vec{v} \cdot \vec{x}| \leq|\vec{v}||\vec{x}|<v c\left|t_{\mathbf{x}}\right|<c^{2}\left|t_{\mathbf{x}}\right|
\end{gathered}
$$

$$
\|\mathbf{x}\|^{2}:=-c^{2} t_{\mathbf{x}}^{2}+|\vec{x}|^{2}
$$

Structure of
 Minkowski Space

- There are five kinds of vectors in Minkowski spacetime:
- space-like $\quad\|x\|^{2}>0$
- time-like

$$
\|\mathbf{x}\|^{2}<0
$$

- and light-like. $\|x\|^{2}=0$
- Time-like and light-like

Causal vectors can be either

- future-directed $\quad t_{\mathbf{x}}>0$
- or past-directed. $\quad t_{\mathrm{x}}<0$

$$
\begin{gathered}
t^{\prime}=\gamma\left(t-\vec{v} \cdot \vec{x} / c^{2}\right) \\
|\vec{v} \cdot \vec{x}| \leq|\vec{v}||\vec{x}|<v c\left|t_{\mathbf{x}}\right|<c^{2}\left|t_{\mathbf{x}}\right|
\end{gathered}
$$

$$
\|\mathbf{x}\|^{2}:=-c^{2} t_{\mathbf{x}}^{2}+|\vec{x}|^{2}
$$

Kinematical Effects

Length Contraction

An inertial observer O^{\prime} carries a ruler of length L_{0} at speed v past an inertial observer O.

How long does O measure it to be?

Length Contraction

An inertial observer O^{\prime} carries a ruler of length L_{0} at speed v past an inertial observer O.

How long does O measure it to be?
How long does O^{\prime} measure and identical ruler carried by O to be?

$$
\begin{aligned}
& x_{0}^{\prime}=0=\gamma\left(x_{0}-v t\right) \\
& x_{1}^{\prime}=L_{0}=\gamma\left(x_{1}-v t\right)
\end{aligned}
$$

$$
x_{1}(t)-x_{0}(t)=\frac{L_{0}}{\gamma}=\sqrt{1-v^{2} / c^{2}} L_{0}
$$

$x_{1}(t)-x_{0}(t)=\frac{L_{0}}{\gamma}=\sqrt{1-v^{2} / c^{2}} L_{0}$

Length Contraction

An inertial observer O^{\prime} carries a ruler of length L_{0} at speed v past an inertial observer O.

How long does O measure it to be?
How long does O^{\prime} measure and identical ruler carried by O to be?

$$
\begin{array}{ll}
x_{0}=0 & x^{\prime}=\gamma(x-v t) \\
x_{1}=L_{0} & t^{\prime}=\gamma\left(t-v x / c^{2}\right)
\end{array}
$$

$$
x^{\prime}+v t^{\prime}=\gamma\left(x-v^{2} x / c^{2}\right)
$$

$x_{1}(t)-x_{0}(t)=\frac{L_{0}}{\gamma}=\sqrt{1-v^{2} / c^{2}} L_{0}$

Length Contraction

An inertial observer O^{\prime} carries a ruler of length L_{0} at speed v past an inertial observer O.

$$
\begin{aligned}
& x_{0}=0 \\
& x_{1}=L_{0} \\
& x^{\prime}+v t^{\prime}=\gamma\left(x-v^{2} x / c^{2}\right)=\frac{x}{\gamma} \\
& x_{1}^{\prime}\left(t^{\prime}\right)-x_{0}^{\prime}\left(t^{\prime}\right)=\frac{L_{0}}{\gamma}
\end{aligned}
$$

$$
\begin{aligned}
x_{1}(t)-x_{0}(t) & =\frac{L_{0}}{\gamma}=\sqrt{1-v^{2} / c^{2}} L_{0} \\
x_{1}^{\prime}\left(t^{\prime}\right)-x_{0}^{\prime}\left(t^{\prime}\right) & =\frac{L_{0}}{\gamma}
\end{aligned}
$$

Length Contraction

An inertial observer O^{\prime} carries a ruler of length L_{0} at speed v past an inertial observer O.

How long does O measure it to be?
How long does O^{\prime} measure and identical ruler carried by O to be?

Length of O^{\prime} ruler measured by $\mathrm{O}=\|\mathrm{A}\|<\|\mathrm{B}\|$
Length of O ruler measured by $\mathrm{O}^{\prime}=\|\mathrm{C}\|<\|\mathrm{D}\|$
$T:=t_{E}=\gamma T_{0}=\frac{T_{0}}{\sqrt{1-v^{2} / c^{2}}}$

Time Dilation

An inertial observer O^{\prime} carries a clock that advances a time T_{0} while she passes O at speed v.

How much time elapses for O ?

$$
t_{E}^{\prime}=\gamma\left(t_{E}-\vec{v} \cdot \vec{x}_{E} / c^{2}\right)=\gamma\left(1-v^{2} / c^{2}\right) t_{E}=\frac{t_{E}}{\gamma}
$$

What happens if the roles are reversed?
$T:=t_{E}=\gamma T_{0}=\frac{T_{0}}{\sqrt{1-v^{2} / c^{2}}}$
$T^{\prime}=\gamma T_{0}$

Time Dilation

An inertial observer O^{\prime} carries a clock that advances a time T_{0} while she passes O at speed v.

How much time elapses for O ?
What happens if the roles are reversed?

$$
t_{G}^{\prime}=\gamma\left(t_{G}-\vec{v} \cdot \vec{x}_{G} / c^{2}\right)=\gamma T_{0}
$$

$T:=t_{E}=\gamma T_{0}=\frac{T_{0}}{\sqrt{1-v^{2} / c^{2}}}$
$T^{\prime}=\gamma T_{0}$

Time Dilation

An inertial observer O^{\prime} carries a clock that advances a time T_{0} while she passes O at speed v.

How much time elapses for O ?

$$
\sqrt{-\|F\|^{2}}>\sqrt{-\|G\|^{2}}=\sqrt{-\|E\|^{2}}<\sqrt{-\|H\|^{2}}
$$

What happens if the roles are reversed?

$$
\left[I+(\gamma-1) \hat{v} \hat{v}+\vec{u}^{\prime} \vec{v} / c^{2}\right]^{-1}=I-\frac{\left(1-\gamma^{-1}\right) \hat{v} \hat{v}}{1+\vec{v} \cdot \vec{u}^{\prime} / c^{2}}-\frac{\vec{u}^{\prime} \vec{v} / c^{2}}{1+\vec{v} \cdot \vec{u}^{\prime} / c^{2}}
$$

Exercise!

Velocity Addition

$$
\vec{x}^{\prime}=\vec{u}^{\prime} t^{\prime}
$$

A particle moves with uniform velocity u^{\prime} relative to O^{\prime}, who moves

$$
[I+(\gamma-1) \hat{v} \hat{v}] \cdot \vec{x}-\gamma \vec{v} t=\vec{u}^{\prime} \gamma\left(t-\vec{v} \cdot \vec{x} / c^{2}\right)
$$ with uniform velocity v relative to O.

This particle will move with uniform velocity u relative to O. What is it?

$$
\left[I+(\gamma-1) \hat{v} \hat{v}+\vec{u}^{\prime} \vec{v} / c^{2}\right] \cdot \vec{x}=\gamma\left(\vec{v}+\vec{u}^{\prime}\right) t
$$

$$
\vec{x}=\vec{u} t \quad \text { with } \quad \vec{u}=\frac{\vec{v}+\vec{u}_{11}^{\prime}+\vec{u}_{\perp}^{\prime} / \gamma}{1+\vec{v} \cdot \vec{u}^{\prime} / c^{2}}
$$

Aberration

How does the angle of incidence of a stream of particles depend on the motion of the observer?

How does the angle of incidence of a wave depend on the motion of the observer?

Aberration

How does the angle of incidence of a stream of particles depend on the motion of the observer?

How does the angle of incidence of a wave depend on the motion of the observer?

Aberration

How does the angle of incidence of a stream of particles depend on the motion of the observer?

How does the angle of incidence of a wave depend on the motion of the observer?
$\frac{u^{\prime 2}}{c^{2}}=1-\frac{\left(1-v^{2} / c^{2}\right)\left(1-u^{2} / c^{2}\right)}{\left[1+\left(v u / c^{2}\right) \cos \alpha\right]^{2}}$

$$
\vec{u}^{\prime}=\frac{\vec{u}_{11}-\vec{v}+\vec{u}_{\perp} / \gamma}{1-\vec{v} \cdot \vec{u} / c^{2}}
$$

$$
u^{\prime} \cos \alpha^{\prime}=\frac{u \cos \alpha+v}{1+\left(v u / c^{2}\right) \cos \alpha}
$$

$$
u^{\prime} \sin \alpha^{\prime}=\frac{(u / \gamma) \sin \alpha}{1+\left(v u / c^{2}\right) \cos \alpha}
$$

$$
\tan \alpha^{\prime}=\frac{\sin \alpha}{\gamma(\cos \alpha+v / u)}
$$

(Particle Case)

$$
\begin{gathered}
\tan \alpha^{\prime}=\frac{\sin \alpha}{\gamma(\cos \alpha+v / u)} \\
\frac{u^{\prime 2}}{c^{2}}=1-\frac{\left(1-v^{2} / c^{2}\right)\left(1-u^{2} / c^{2}\right)}{\left[1+\left(v u / c^{2}\right) \cos \alpha\right]^{2}}
\end{gathered}
$$

Aberration

$$
\Psi(t, \vec{x})=A \mathrm{e}^{-\mathrm{i}(\omega t-\vec{k} \cdot \vec{x})}
$$

How does the angle of incidence of a stream of particles depend on the motion of the observer?

$$
0=\frac{\mathrm{d}}{\mathrm{~d} t}(\omega t-\vec{k} \cdot \vec{x})=\omega-\vec{k} \cdot \vec{u}
$$

How does the angle of incidence of a wave depend on the motion of the observer?

$$
\omega t-\vec{k} \cdot \vec{x}=\omega \gamma\left(t^{\prime}+\vec{v} \cdot \vec{x}^{\prime} / c^{2}\right)-\vec{k} \cdot\left[\vec{x}^{\prime}+(\gamma-1) \hat{v} \hat{v} \cdot \vec{x}^{\prime}+\gamma \vec{v} t\right]
$$

(Particle Case)

$$
\begin{gathered}
\tan \alpha^{\prime}=\frac{\sin \alpha}{\gamma(\cos \alpha+v / u)} \\
\frac{u^{\prime 2}}{c^{2}}=1-\frac{\left(1-v^{2} / c^{2}\right)\left(1-u^{2} / c^{2}\right)}{\left[1+\left(v u / c^{2}\right) \cos \alpha\right]^{2}}
\end{gathered}
$$

Aberration

$$
\Psi(t, \vec{x})=A \mathrm{e}^{-\mathrm{i}(\omega t-\vec{k} \cdot \vec{x})}
$$

How does the angle of incidence of a stream of particles depend on the motion of the observer?

$$
0=\frac{\mathrm{d}}{\mathrm{~d} t}(\omega t-\vec{k} \cdot \vec{x})=\omega-\vec{k} \cdot \vec{u}
$$

How does the angle of incidence of a wave depend on the motion of the observer?

$$
\binom{\omega^{\prime} / c^{2}}{\vec{k}^{\prime}}=\left(\begin{array}{cc}
\gamma & -\gamma c^{-2} \vec{v} \cdot \\
-\gamma \vec{v} & I \cdot+(\gamma-1) \hat{v} \hat{v} \cdot
\end{array}\right)\binom{\omega / c^{2}}{\vec{k}}
$$

$$
\omega t-\vec{k} \cdot \vec{x}=\gamma(\omega-\vec{v} \cdot \vec{k}) t^{\prime}-\left[\vec{k}+(\gamma-1) \vec{k} \cdot \hat{v} \hat{v}-\gamma \vec{v} \omega / c^{2}\right] \cdot \vec{x}^{\prime}
$$

(Particle Case)

$$
\begin{gathered}
\tan \alpha^{\prime}=\frac{\sin \alpha}{\gamma(\cos \alpha+v / u)} \\
\frac{u^{\prime 2}}{c^{2}}=1-\frac{\left(1-v^{2} / c^{2}\right)\left(1-u^{2} / c^{2}\right)}{\left[1+\left(v u / c^{2}\right) \cos \alpha\right]^{2}}
\end{gathered}
$$

Aberration

How does the angle of incidence of a stream of particles depend on the motion of the observer?

How does the angle of incidence of a wave depend on the motion of the observer?

$$
\begin{aligned}
\omega^{\prime} & =\gamma(\omega+v k \cos \alpha) \\
k^{\prime} \cos \alpha^{\prime} & =\gamma\left(k \cos \alpha+v \omega / c^{2}\right) \\
k^{\prime} \sin \alpha^{\prime} & =k \sin \alpha
\end{aligned}
$$

$$
\begin{array}{ccc}
\text { (Particle Case) } & u \leftrightarrow \frac{c^{2}}{u} & \text { (Wave Case) } \tag{WaveCase}\\
\tan \alpha^{\prime}=\frac{\sin \alpha}{\gamma(\cos \alpha+v / u)} & & \tan \alpha^{\prime}=\frac{\sin \alpha}{\gamma\left(\cos \alpha+v u / c^{2}\right)} \\
\frac{u^{\prime 2}}{c^{2}}=1-\frac{\left(1-v^{2} / c^{2}\right)\left(1-u^{2} / c^{2}\right)}{\left[1+\left(v u / c^{2}\right) \cos \alpha\right]^{2}} & \frac{c^{2}}{u^{\prime 2}}=1-\frac{\left(1-v^{2} / c^{2}\right)\left(1-c^{2} / u^{2}\right)}{[1+(v / u) \cos \alpha]^{2}}
\end{array}
$$

Aberration

How does the angle of incidence of a stream of particles depend on the motion of the observer?

How does the angle of incidence of a wave depend on the motion of the observer?
(Particle Case)

$$
u \leftrightarrow \frac{c^{2}}{u}
$$

(Wave Case)

$$
\tan \alpha^{\prime}=\frac{\sin \alpha}{\gamma(\cos \alpha+v / u)}
$$

$$
\frac{u^{\prime 2}}{c^{2}}=1-\frac{\left(1-v^{2} / c^{2}\right)\left(1-u^{2} / c^{2}\right)}{\left[1+\left(v u / c^{2}\right) \cos \alpha\right]^{2}}
$$

Aberration

How does the angle of incidence of a stream of particles depend on the motion of the observer?

How does the angle of incidence of a wave depend on the motion of the observer?

$$
\mathbf{u}=\frac{\mathbf{v}-\hat{\mathbf{k}} \hat{\mathbf{k}} \cdot \mathbf{v}}{\sqrt{1+(\hat{\mathbf{k}} \cdot \mathbf{v} / c)^{2}}}
$$

At what time t does the pulse emitted at time s arrive at O ?

$$
t(s)=s+\frac{|\vec{r}(s)|}{c}
$$

$$
\dot{t}(s)=1+\frac{\vec{r}(s) \cdot \dot{\vec{r}}(s)}{c|\vec{r}(s)|}=1+\frac{\hat{r}(s) \cdot \dot{\vec{r}}(s)}{c}
$$

Doppler Shift

Suppose a moving source emits

$$
\Delta t \cong(1+\hat{r}(s) \cdot \dot{\vec{r}}(s) / c) \gamma(s) \Delta s_{0}
$$ pulses of light periodically at frequency ω_{0}.

With what frequency does an inertial observer O see pulses?

$$
\frac{\omega_{0}}{\omega}=\left[\frac{1+\hat{r} \cdot \vec{v} / c}{\sqrt{1-v^{2} / c^{2}}}\right]_{\mathrm{ret}}
$$

$\ddot{t}(s)=\frac{\dot{\vec{r}}(s) \cdot \dot{\vec{r}}(s)+\vec{r}(s) \cdot \ddot{\vec{r}}(s)}{c|\vec{r}(s)|}-\frac{(\vec{r}(s) \cdot \dot{\vec{r}}(s))^{2}}{c|\vec{r}(s)|^{3}}=\frac{\hat{r}(s) \cdot \ddot{\vec{r}}(s)}{c}+\frac{\dot{\vec{r}}(s) \cdot[I-\hat{r}(s) \hat{r}(s)] \cdot \dot{\vec{r}}(s)}{c|\vec{r}(s)|}$

