
Physics 6938 Florida Atlantic University
General Relativity Fall, 2007

Differential Geometry Exercises I: Tensors
Due: Tuesday, 9 October 2007

Target Date: Thursday, 6 September 2007

Suggested Reading: d’Inverno 5.1 – 5.9, Schutz 2.1 – 2.31.

1. [d’Inverno 5.2] Write down the change of coordinates from Cartesian coordinates (xa) = (x, y, z)
to spherical polar coordinates (x′a) = (r, θ, φ) in R3. Obtain the transformation matrices

∂xa

∂x′b
and

∂x′a

∂xb

expressing them both in terms of the primed coordinates. Obtain the Jacobians J and J ′.
Where is J ′ zero or infinite?

2. [d’Inverno 5.6] Write down the change of coordinates from Cartesian coordinates (xa) = (x, y)
to plane polar coordinates (x′a) = (R,φ) in R2 and obtain the transformation matrix

∂x′a

∂xb

expressed as a function of the primed coordinates. Find the components of the tangent vector
to the curve consisting of a circle of radius a centered at the origin with the standard parame-
terization (see Exercise 5.1(i)) and use (5.16) to find its components in the primed coordinate
system.

3. [d’Inverno 5.9] Show, by differentiating (5.20) with respect to x′c, that

∂2φ

∂xa ∂xb

is not a tensor.

4. [d’Inverno 5.11]

a. Show that the fact that a covariant second rank tensor is symmetric in one coordinate
system is a tensorial property.

b. If Xab is anti-symmetric and Yab is symmetric then prove that Xab Yab = 0.

5. [d’Inverno 5.14] Evaluate δa
a and δa

b δb
a in n dimensions.

6. [d’Inverno 5.15] Check that the definition of the Lie bracket leads to the results (5.37), (5.38),
and (5.39).



7. [d’Inverno 5.16] In R2, let (xa) = (x, y) denote Cartesian and (x′a) = (R,φ) plane polar
coordinates (see Exercise 5.6).

a. If the vector field X has components Xa = (1, 0), then find X ′a.
b. The operator grad can be written in each coordinate system as

grad f =
∂f

∂x
i +

∂f

∂y
j =

∂f

∂R
R̂ +

∂f

∂φ

φ̂

R
,

where f is an arbitrary function and

R̂ = cos φ i + sinφ j, φ̂ = − sinφ i + cos φ j.

Take the scalar product of grad f with i, j, R̂, and φ̂ in turn to find relationships
between the operators ∂/∂x, ∂/∂y, ∂/∂R, and ∂/∂φ.

c. Express the vector field X as an operator in each coordinate system. Use part (b) to
show that these expressions are the same.

d. If Y a = (0, 1) and Za = (−y, x), then find Y ′a, Z ′a, Y , and Z.
e. Evaluate all the Lie brackets of X, Y and Z.

8. [Schutz 2.5 and 2.6, p. 59]

a. Prove that a general
(
2
0

)
tensor cannot be expressed as a simple outer product of two

vectors.
(Hint : count the number of components a

(
2
0

)
tensor may have.)

b. Prove that the
(
1
1

)
tensor V̄ ⊗ ω̃ has components V i ωj .

c. Prove that the set of all
(
2
0

)
tensors at P is a vector space under addition defined by

analogy with equation (2.16b). Show that ēi ⊗ ēj is a basis for that space. (Thus,
although a general

(
2
0

)
tensor is not a simple outer product, it can be represented as a

sum of such tensors.) This vector space is called TP ⊗ TP .

9. [Schutz 2.8, p. 60] Let A and B be two
(
1
1

)
tensors, and regard them as vector-valued linear

functions of vectors: if V̄ is a vector then A(V̄ ) and B(V̄ ) are vectors. Show that if we define
C(V̄ ) to be

C(V̄ ) = B(A(V̄ )),

then C is a
(
1
1

)
tensor as well. Show that its components are

Ci
j = Bi

k Ak
j .

Discuss the relation of this with the linear transformation defined in §1.6.

10. [Schutz 2.13, p. 67]

a. Show that {gij} are the components of a
(
2
0

)
tensor g−1, either by showing that they

transform properly, or that they define a bilinear function of one-forms.
b. Show that if a vector basis {ēi} is orthonormal, so is its dual one-form basis {ω̃i}, in

the sense that g−1(ω̃i, ω̃j) = ±δij .



Physics 6938 Florida Atlantic University
General Relativity Fall, 2007

Differential Geometry Exercises II: Manifolds
Due: Tuesday, 9 October 2007

Target Date: Thursday, 13 September 2007

Suggested Reading: d’Inverno 6.1 – 6.2; Schutz 2.1 – 2.4 and 3.1 – 3.5.

1. [Schutz 3.1, p. 78]

a. Show that, on functions and fields,

[LV̄ ,LW̄ ] = L[V̄ ,W̄ ]

for any two twice-differentiable vector fields V̄ and W̄ .
b. Prove the Jacobi identity for Lie derivatives on functions and vector fields:

[[LX̄ ,LȲ ] ,LZ̄ ] + [[LȲ ,LZ̄ ] ,LX̄ ] + [[LZ̄ ,LX̄ ] ,LȲ ] = 0,

where X̄, Ȳ , Z̄ are any three-times-differentiable vector fields.

Hint : For (a) on vectors, show that (3.8) is equivalent to (2.14). For (b) on vectors, use (3.8)
and the fact that, as is obvious from its definition, LĀ + LB̄ = LĀ+B̄ .

2. [Schutz 3.2 and 3.3, p. 78]

a. Deduce the Leibniz rule

LV̄ (fŪ) = (LV̄ f) Ū + f LV̄ Ū

from the definitions of LV̄ on functions and vector fields.
b. From (2.7) we know that the components of LV̄ Ū on a coordinate basis are

(LV̄ Ū)i = V j ∂

∂xj
U i − U j ∂

∂xj
V i.

Given an arbitrary basis {ēi} for vector fields, show from (a) that

(LV̄ Ū)i = V j ēj(U i)− U j ēj(V i) + V j Uk (Lēj
ēk)i,

where ēj(U i) means the derivative of the function U i with respect to the vector field ēj .
c. Show that if one chooses a coordinate system in which V̄ is a coordinate basis vector,

say ∂/∂x1, then for any vector field W̄

(LV̄ W̄ )i =
∂W i

∂x1
.

That is, the Lie derivative is the coordinate-independent form of the partial derivative.

3. [Schutz 3.4, p. 79] From (3.13) and the expression (2.7) for the components of LV̄ W̄ =
[
V̄ , W̄

]
,

deduce that LV̄ ω̃ has components, on a coordinate basis,

(LV̄ ω̃)i = V j ∂

∂xj
ωi + ωj

∂

∂xi
V j .



4. [d’Inverno 6.2] Use (6.17) to find expressions for LX Zbc and LX (Y a Zbc). Use these expressions
and (6.15) to check the Leibniz property in the form (6.12).

5. Let (x, y, z) denote a point in R3 with x2 + y2 + z2 = 1. Define the maps

ψN (x, y, z) :=
(

x

1 + z
,

y

1 + z

)
and ψS(x, y, z) :=

(
x

1− z
,

y

1− z

)
.

from S2 to R2.

a. Show that ψN is defined everywhere on S2 except at the south pole (0, 0,−1) and that
ψS is defined everywhere except at the north pole (0, 0, 1).

b. Calculate the coordinate transformation ψN ◦ ψ−1
S (u, v) on the largest subset of R2 for

which it can be defined. Show that this mapping from R2 to itself is smooth everywhere
it is defined.

c. Conclude that S2 is a two-dimensional real manifold.

6. The complex projective plane CP 1 is the set of “complex lines” in C2 — the set of vectors
(z1, z2) ∈ C2 up to overall scaling (z1, z2) 7→ (αz1, αz2) by an arbitrary complex number α.
More mathematically, CP 1 is the set of equivalence classes [z1, z2] of points in C2, where two
points are equivalent if and only if they are complex scalings of one another.

a. Define the mappings

ζ1 :=
z1

z2
and ζ2 :=

z2

z1

from C2 to the complex plane C. Show that each is in fact a (complex) coordinate
chart mapping CP 1 to C.

b. What are the repsective domains U1,2 of the charts ζ1,2? That is, on what set of “lines”
[z1, z2] ∈ CP 1 is each coordinate ζ1,2 well-defined?

c. Show that the inverse charts mapping w ∈ C back to CP 1 can be written

ζ−1
1 (w) = [w, 1] and ζ−1

2 (w) = [1, w].

d. Find the coordinate transformation mapping the region ζ1(U1∩U2) of the complex plane
to the region ζ2(U1 ∩ U2) of the complex plane. Show that it is smooth and invertible
throughout ζ1(U1 ∩ U2), and that its inverse is also smooth. (In fact, it is analytic in
the complex-variables sense).

e. Conclude that CP 1 is a one-dimensional complex manifold.

7. Define the mapping
φ(x, y, z) := [1 + z, x+ iy] = [x− iy, 1− z]

from S2 to CP 1.

a. Prove the second equality in the above definition of φ(x, y, z).
b. Show that this mapping is invertible. That is, find a formula giving (x, y, z) as a

function of z1 and z2, and check that this formula is invariant under scalings (z1, z2) 7→
(αz1, αz2).

c. Calculate the four mappings ζ1,2 ◦ φ ◦ ψ−1
N,S from R2 to C. Show that each is smooth

and has a smooth inverse.
d. Conclude that, viewed as a two-dimensional real manifold, CP 1 is diffeomorphic to S2.



Physics 6938 Florida Atlantic University
General Relativity Fall, 2007

Differential Geometry Exercises III: Connections
Due: Tuesday, 9 October 2007

Target Date: Tuesday, 25 September 2007

Suggested Reading: d’Inverno 6.3 – 6.12; Schutz 6.1 – 6.6.

1. [d’Inverno 6.5] Assuming (6.22) and (6.25), apply the Leibniz rule to the covariant derivative of
Xa Y a, where Y a is arbitrary, to verify (6.26).

2. [d’Inverno 6.9] If s is an affine parameter, then show that, under the transformation

s 7→ s̄ = s̄(s),

the parameter s̄ will be affine if and only if s̄ = αs + β, where α and β are constants.

3. [d’Inverno 6.10] Show that ∇c∇d Xa
b −∇d∇c Xa

b = Ra
ecd Xe

b −Re
bcd Xa

e.

4. [d’Inverno 6.11] Show that ∇X (∇Y Za)−∇Y (∇X Za)−∇[X,Y ] Z
a = Ra

bcd Zb Xc Y d.

5. [d’Inverno 6.14] The line elements of R3 in Cartesian, cylindrical polar and spherical polar, and
spherical polar coordinates are given respectively by

ds2 = dx2 + dy2 + dz2 = dR2 + R2 dφ2 + dz2 = dr2 + r2 dθ2 + r2 sin2 θ dφ2.

Find gab, gab and g in each case.

6. [d’Inverno 6.17] Find the geodesic equation for R3 in cylindrical polars.
Hint : Use the results of Exercise 6.14 to compute the metric connection and substitute in (6.68).

7. [d’Inverno 6.20] Suppose we have an arbitrary symmetric connection Γa
bc satisfying ∇c gab = 0.

Deduce that Γa
bc must be the metric connection.

Hint : Use the equation to find expressions for ∂b gdc, ∂c gdb and −∂d gbc, as in (6.78), add the
equations together and multiply by 1

2 gad.

8. [d’Inverno 6.23 and 6.24]

a. Establish the identities (6.78) and (6.79). Show that (6.78) is equivalent to Ra
[bcd] ≡ 0.

b. Establish the identity (6.82). Show that (6.82) is equivalent to Rde[eb;c] ≡ 0. Deduce
(6.86).

Hint : Choose an arbitrary point P and introduce geodesic coordinates at P .

9. [Schutz 6.10, p. 208] Suppose a manifold has two connections defined on it, with Christoffel
symbols Γk

ij and Γ′k
ij . Show that

Dk
ij ≡ Γk

ij − Γ′k
ij

are the components of a
(
1
2

)
tensor. Show that the tensor D is symmetric in its vector arguments

if and only if both connections have the same torsion tensor.



10. [Schutz 6.11, p. 208] A manifold has a symmetric connection. Show that in any expression for
the components of the Lie derivative, all commas can be replaced by semicolons. An example:

(LŪ ω̃)i = ωi,j U j + ωj U j
,i = ωi;j U j + ωj U j

;i.

(Naturally, all commas must be changed, not just some.)

11. [Schutz 6.14, p. 211] The components of the Riemann tensor Ri
jkl, are defined by

[∇i,∇j ] ēk −∇[ēi,ēj ] ēk = Rl
kij ēl.

(Where ēi is possibly a non-coordinate basis. — CB)

a. Show that in a coordinate basis

Rl
kij = Γl

kj,i − Γl
ki,j + Γm

kj Γl
mi − Γm

ki Γl
mj .

b. In a non-coordinate basis, define the commutation coefficients Ci
jk by

[ēj , ēk] = Ci
jk ēi.

Show that

Rl
kij = Γl

kj,i − Γl
ki,j + Γm

kj Γl
mi − Γm

ki Γl
mj − Cm

ij Γl
km,

where f,i ≡ ēi[f ].
c. Show that

Rl
k(ij) ≡ 1

2 (Rl
kij + Rl

kji) = 0 and Rl
[kij] = 0.

Hint : For the second equality, use normal coordinates. The result, of course, is inde-
pendent of the basis.

d. Using (c) show that in an n-dimensional manifold, the number of linearly independent
components opf Rl

kij is

n4 − n2 n(n + 1)
2

− n
n(n− 1)(n− 2)

3!
= 1

3 n2 (n2 − 1).

12. [Schutz 6.16, p. 215] Consider a two-dimensional flat space with Cartesian coordinates x, y and
polar coordinates r, θ.

a. Use the fact that ēx and ēy are globally parallel vector fields (ēx(P ) is parallel to ēx(Q)
for arbitrary P , Q) to show that

Γr
θθ = −r, Γθ

rθ = Γθ
θr =

1
r
,

and all other Γ’s are zero in polar coordinates.
b. For an arbitrary vector field V̄ , evaluate ∇i V j and ∇i V i for polar cooridnates in terms

of the components V r and V θ.
c. For the basis

r̂ =
∂

∂r
, θ̂ =

1
r

∂

∂θ

find all the Christoffel symbols.
d. Same as (b) for the basis in (c).



Physics 6938 Florida Atlantic University
General Relativity Fall, 2007

Differential Geometry Exercises IV: Integration
Due: Tuesday, 9 October 2007

Target Date: Tuesday, 2 October 2007

Suggested Reading: d’Inverno 7.1 – 7.4; Schutz 4.1 – 4.23.

1. [d’Inverno 7.4] Show that, for any vector field T a, the divergence theorem in four dimensions
can be written in the form ∫

∂Ω

T a √−g dSa =
∫

Ω

∇a T a √−g d4x.

2. [Schutz 4.8, p. 118] Show that if p̃ is a one-form and q̃ a two-form, then

(p̃ ∧ q̃)ijk = pi qjk + pj qki + pk qij = 3 p[i qjk].

More generally, show that if p̃ is a p-form and q̃ a q-form,

(p̃ ∧ q̃)i...jk...l = Cp+q
p p[i...j qk...l].

(The symbol Cp+q
p here is

(
p+q

p

)
from the binomial theorem. — CB)

3. [Schutz 4.9, p. 120] Prove (4.16).

4. [Schutz 4.12 and 4.13, pp. 131-132]

a. Show that the determinant of an n× n matrix with elements Aij (i, j = 1, . . . , n) is

detA = εij...k A1i A2j . . . Ank.

Hint : The determinant of an n × n matrix is defined in terms of (n − 1) × (n − 1)
determinants by the cofactor rule. Use that rule to prove this results by induction from
the 2× 2 case.

b. Show that
det A =

1
n!

εab...c εij...k Aai Abj . . . Ack.

c. If a manifold has a metric, let {ω̃i} be an orthonormal basis for one-forms, and define
ω̃ to be the preferred volume-form

ω̃ = ω̃1 ∧ ω̃2 ∧ . . . ∧ ω̃n.

Show that, if xk′
is an arbitrary coordinate system,

ω̃ = |g|1/2 d̃x1′
∧ d̃x2′

∧ . . . ∧ d̃xn′
,

where g is the determinant of the matrix of components gi′j′ of the metric tensor in
these coordinates.



5. [Schutz 4.14, p. 135]

a. Show that
d̃(f d̃g) = d̃f ∧ d̃g.

b. Use (a) to show that if

α̃ =
1
p!

αi...j d̃xi ∧ . . . ∧ d̃xj

is the expansion for the p-form α̃ in a coordinate basis, then

d̃α̃ =
1
p!

∂αi...j

∂xk
d̃xk ∧ d̃xi ∧ . . . ∧ d̃xj ,

and hence that (d̃α̃)ki...j = (p + 1) ∂[k αi...j].

6. [Schutz 4.16, p. 137] Use (4.50), (4.52), and property (iii) of §4.14 to show that (in three-
dimensional Euclidean vector calculus) the divergence of a curl and the curl of a gradient both
vanish.

7. [Schutz 4.18, p. 142] Use the local exactness theorem to show that locally (in three-dimensional
Euclidean vector calculus) a curl-free vector field is a gradient and a divergence-free vector field
is a curl.

8. [Schutz 4.20 and 4.21, p. 148]

a. From (4.77) show that, if coordinates are chosen in which ω̃ = f d̃x1 ∧ . . . ∧ d̃xn, then

divω̃ ξ̄ =
1
f

(f ξi),i.

b. In Euclidean three-space the preferred volume three-form is ω̃ = d̃x ∧ d̃y ∧ d̃z. Show
that in spherical polar coordinates this is ω̃ = r2 sin θ d̃r ∧ d̃θ ∧ d̃φ. Use (4.80) to show
that the divergence of a vector ξ̄ = ξr ∂r + ξθ ∂θ + ξφ ∂φ is

div ξ̄ =
1
r2

∂

∂r
(r2 ξr) +

1
sin θ

∂

∂θ
(sin θ ξθ) +

∂ξφ

∂φ
.

9. [Schutz 4.23, p. 149]

a. Show from (4.77) that another expression for the divergence of a vector ξ̄ is

divω̃ ξ̄ = ∗d∗ ξ̄,

where the ∗-operation is the dual with respect to ω̃ introduced earlier.
b. For any p-vector F define

divω̃ F = (−1)n(p−1) ∗d∗F.

Show that divω̃ F is a (p − 1)-vector. Show that if ω̃ has components εi...j in some
coordinate system, then

(divω̃ F)i...j = F ki...j
,k

in those coordinates.
c. Generalize part (a) of the previous exercise to p-vectors.



Physics 6938 Florida Atlantic University
General Relativity Fall, 2007

Differential Geometry Exercises V: Symmetry
Due: Tuesday, 9 October 2007

Target Date: Tuesday, 9 October 2007

Suggested Reading: d’Inverno 7.5 – 7.7; Schutz 3.6 – 3.13 and 5.11 – 5.14.

1. [d’Inverno 7.7] Use (7.45), (7.46), and (7.47) to find the geodesic equations of the spherically
symmetric line element given in Exercise 6.31. Use the equations to read off directly the com-
ponents Γa

bc and check them with those obtained in Exercise 6.31(ii).
Hint : Remember Γa

bc = Γa
cb.

2. [d’Inverno 7.12] Consider the following operator identity:

LU LV −LV LU = L[U,V ].

(U and V are vector fields. — CB)

a. Check it holds when applied to an arbitrary scalar function f .
b. Check it holds when applied to an arbitrary contravariant vector field ma.

Hint : Use the Jacobi identity.
c. Deduce that the identity holds when applied to a covariant vector field pa.

Hint : Let f = ma pa, where ma is arbitrary.
d. Use the identity to prove that if U and V a Killing vector fields, then so is their

commutator [U, V ].
e. Given that ∂x and −y ∂x + x ∂y are Killing vector fields, find another.

3. [d’Inverno 7.13 and 7.14]

a. By making use of the identity

Ra
bcd + Ra

cdb + Ra
dbc = 0

or otherwise, prove that a Killing vector satisfies

∇c∇b Xa = Rabcd Xd.

b. Use this result to prove that any Killing vector satisfies

gbc∇b∇c Xa −Rab Xb = 0.

4. [Schutz 6.20, p. 216] Show that for an arbitrary vector V̄

(LV̄ g)ij = ∇i Vj +∇j Vi.

Therefore a Killing vector obeys Killing’s equation ∇(i Vj) = 0.



5. [Schutz 3.5, p. 81]

a. Show that if V̄ and W̄ are linear combinations (not necessarily with constant coefficients)
of m vector fields that all commute with one another, then the Lie bracket of V̄ and W̄
is a linear combination of the same m fields.

b. Prove the same result when the m vector fields have Lie brackets which are nonvanishing
linear combinations of the m fields.

6. Let ξa be a Killing vector field for the metric gab, and let ηa be the tangent vector to a geodesic of
gab in an affine parameterization. Show that the inner product of these vectors is constant along
the geodesic. What happens to this conserved quantity if one changes affine parameterizations?
What happens if the parameterization is not affine?

7. Let gab be a stationary spacetime metric — meaning that it has a time-like Killing field ta —
that solves the vacuum Einstein equations Rab = 0.

a. Show that Fab := ∇a tb satisfies the source-free Maxwell equations.
b. Suppose that ta is in fact a static Killing field — meaning that it is orthogonal every-

where to some space-like surfaces Σ. Calculate the electric and magnetic parts of Fab

on the static slices Σ.
c. Use the Gauss law to compute the “electric charge” of the Schwarzschild metric

ds2 = (1− 2M/r) dt2 + (1− 2M/r)−1 dr2 + r2 (dθ2 + sin2 θ dφ2).

Note that the static Killing field in this case is ∂t, and that the static slices are the
surfaces of constant t in spacetime.
Hint : The electric charge is given by a flux integral. Show that one gets the same result
no matter which two-sphere one uses in the integral. Then, calculate in the asymptotic
region where r →∞.


